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戱 引言

1 引言

1.1 初见线性问题

线性代数，顾名思义，是一个研究线性问题的代数学学科．我们先从一个简单的例子

出发，看一看线性代数最初研究的问题是什么．在后面的章节中，我们将一步一步构建线

性代数的大楼．

1.1.1 鸡兔同笼问题

我们首先来看一看我们熟悉的鸡兔同笼问题．对于给定数目的鸡和兔子，我们希望求

出它们的头的总数和腿的总数．此处我会使用矩阵的写法，但是会给出足够多的解释．矩

阵的具体定义我们会在后面的章节给出．

对于一只鸡或一只兔子，我们可以用两个数描述它们，即它们的头的数目和脚的数

目．出于线性代数的习惯，我们一般将这两个数写成一列而非一行．由此，我们可以写出

鸡 戽

[
戱

戲

]
, 兔 戽

[
戱

戴

]
现在假如我们有三只鸡，总共会有多少头和脚呢？我们可以简单地将鸡的向量乘上

三，得到 [
戱

戲

]
戳 戽

[
戳

戶

]
于是，两只鸡总共有 戳 个头和 戶 个脚．如果我们再加入两只兔子，该怎么办呢？我们

可以用一种奇特的记号——将表示鸡和兔子的向量横向拼在一起，再将鸡和兔子的数目写

成纵向一列，把这两个东西“乘” 到一起，得到[
戱 戱

戲 戴

][
戳

戲

]
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]
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你可能觉得这只是一种新鲜的写法，并没有什么特殊数学意义．但接下来，我们将更

加深入地看一看上面这个简单的式子，去探讨它背后的有趣的数学性质．

1.1.2 向量与变换

我们再来回顾一下上面这个式子[
戱 戱

戲 戴

][
n戨鸡戩

n戨兔戩

]
戽

[
n戨头戩

n戨脚戩

]

对于一笼鸡和兔，我们可以用“鸡戭兔空间” 中的一个向量

[
n戨鸡戩

n戨兔戩

]
表示．但可能有

一个比较奇特的出题老师，他偏爱将这笼鸡和兔表示为“头戭脚空间” 中的向量

[
n戨头戩

n戨脚戩

]
．

我们可以把

[
戱 戱

戲 戴

]
看作在“鸡戭兔空间” 和“头戭脚空间” 之间的一个映射 T 记号

f : A→ B

x 7→ y

表示 f 是一个定义域为 A、

像位于 B 中的函数，且把

x 映射为 y．

T 戺鸡戭兔空间→头戭脚空间[
n戨鸡戩

n戨兔戩

]
7→

[
n戨头戩

n戨脚戩

]
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我们心中熟悉的向量一般代表一个箭头．在这个例子中，我们也可以将表示一笼鸡和

兔的向量 v 戽

[
n戨鸡戩

n戨兔戩

]
当作一个箭头，而 T 将鸡戭兔空间中的箭头映射为头戭脚空间中的箭

头．

鸡

兔

v

T−−−−→

头

脚

T 戨v戩

这个映射有一个重要的特点：如果我们两种笼子，笼 戱 和笼 戲，分别有 a 个和 b 个，

而每种笼子里面装了特定数目的鸡和兔．现在我们想要求总共的头和脚的数目，该怎么求

呢？我们有两种方法，第一种是先求出总共有多少只鸡多少只兔，再将鸡和兔的数目转换

为头和脚的数目．即 [
n戨头戩

n戨脚戩

]
戽 T

(
a

[
n1戨鸡戩

n1戨兔戩

]
戫 b

[
n2戨鸡戩

n2戨兔戩

])
第二种方法是求出每种笼子里有多少个头多少个脚，再将所有笼子的头的数目和脚的数目

合在一起．即 [
n戨头戩

n戨脚戩

]
戽 a× T

([
n1戨鸡戩

n1戨兔戩

])
戫 b× T

([
n2戨鸡戩

n2戨兔戩

])
这两种求法最终得到的头和脚的数目应该是相等的．即

T 戨a×笼 戱 戫 b×笼 戲戩 戽 a× T 戨笼 戱戩 戫 b× T 戨笼 戲戩

我们将这种把一定数量的笼 戱 与一定数量的笼 戲 合在一起的操作称为笼 戱 与笼 戲 的

线性组合．即 a×笼 戱戫 b×笼 戲 是笼 戱 与笼 戲 的线性组合，而 a×T 戨笼 戱戩戫 b×T 戨笼 戲戩

是 T 戨笼 戱戩 与 T 戨笼 戲戩 的线性组合．而映射 T 的一个重要特点是，你可以选择先进行线性

组合还是先进行变换 T，最终得到的结果是一样的．我们称这样的映射 T 为 线性映射．

线性映射就是线性代数的核心内容．我们之后会看到，线性映射虽然简单，但却有非

常重要的性质．而生活中的许多现象都可以用一个简单的线性映射来表示．

1.2 像代数学家一样思考

学习线性代数不仅可以让我们解决简单的线性问题，它还是从我们以前学习的初等代

数通向现代代数学——又称为抽象代数——的桥梁．在这门课中，我们将试图抛弃数学中

的一切具体例子，完全用抽象的语言去描述线性代数中的数学．事实上，代数学的抽象程

度或许比你现在想象的还要高——高到或许一开始会让人摸不着头脑．但在理解了之后，

这种抽象化却可以让你发现看似无关的数学对象之间的相似性．

1.2.1 从具象到抽象

我们先从一个非常简单的例子开始，体会一下抽象化的意义和方法．我们在小学学过

所谓的平方差公式：对于两个实数 a, b，有

戨a戫 b戩戨a− b戩 戽 a2 − b2
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到了高中和大学，我们又学到了实数以外的许多其他数学对象和它们的运算，如复

数、向量，乃至函数等．那么，他们是否也满足平方差公式呢？例如

� 对于复数 z, w，是否有 戨z 戫 w戩戨z − w戩 戽 z2 − w2？

� 对于向量 a, b，是否有 戨a戫 b戩 · 戨a− b戩 戽 a · a− b · b？
� 对于函数 f, g，是否有 戨f 戫 g戩 ◦ 戨f − g戩 戽 f ◦ f − g ◦ g？在何时成立？ 函数和求导的复合在算子代

数中被视为一种乘法，所以

这种类比是合理的．� 对于偏导，是否有

(
∂

∂x
戫

∂

∂y

)(
∂

∂x
− ∂

∂y

)
f 戽

(
∂2

∂x2
− ∂2

∂y2

)
f？在何时成立？

在线性代数的课程里，我们还会学习到一些新的运算．那么，该如何判断这些运算是

否满足平方差公式呢？例如

� 对于矩阵 A,B，是否有 戨A戫B戩戨A−B戩 戽 A2 −B2？

� 对于三维向量 a, b，是否有 戨a戫 b戩× 戨a− b戩 戽 a× a− b× b？

判断这些这些式子正确与否的方法实际上我们都会，就是将等式左侧的括号展开，看

看能否推到右边．对于两个实数 a, b，我们有

戨a戫 b戩 · 戨a− b戩 戽 a · a− a · b戫 b · a− b · b 乘法分配律

戽 a · a− a · b戫 a · b− b · b 乘法交换律

戽 a · a戫 戨−a · b戫 a · b戩− b · b 加法结合律

戽 a · a− 戰− b · b

戽 a · a− b · b 零的性质

这个推理过程可以移植到复数、向量或者其他数学对象上， 因此，上面的复数和向量点

乘是成立的，而其他几条一

般是不成立的．函数混合偏

导在二阶偏导存在且连续的

情况下可以换序，因此在这

种条件下成立，这是微积分

的内容．

只要上面这几条运算规则

成立就行．因此我们可以断言，一个数学系统如果满足这几条运算规则，平方差公式就一

定成立．在这里，加法和乘法代表什么已经不重要了，例如向量点乘已经不具有我们熟悉

的数的乘法的直观意义了，但它满足这几条规则，因此平方差公式成立．

这个例子告诉我们，决定一个数学系统的运算性质的是运算所满足的基本规则——我

们称之为公理．这个数学系统里被运算的对象代表什么、运算本身代表什么，这些都不重

要．只要有运算的公理，我们就可以推算出这个系统的一切性质．这就是抽象化的基本概

念．这种抽象化的好处在于，除了最开始抽象化来源的那种事物外，你会发现许多其他的

事物也满足这种抽象的规律．这使得代数结构上的性质有着更加广泛的用途．我们后面就

会看到，许多看起来并不那么线性的东西都可以使用抽象的线性代数来解决，只要他们满

足相同的基本性质．

下面我们给出代数学所研究的对象的基本定义．代数学家研究的对象是代数结构．代

数结构是定义了运算的集合．这个集合不一定是我们常常接触的数学对象的集合，例如数

集、点集、向量集等．它可以是任何的集合——动物的集合、奇怪的古文字的集合、二

次元人物的集合等．代数学家们并不关心集合里具体是什么．赋予集合代数性质的是它上

面的运算，这些运算被给定了一些公理．代数结构上的运算常常被称为加法、乘法等我们

熟悉的算数运算．但实际上，代数学家也并不关心它们究竟是不是我们小学所学的加法和

乘法，他们只关心由公理所给出的运算的性质．由集合和上面的运算，代数学家完全通过

抽象的数学方式推导出这个代数结构的性质，而仍然完全不关心这个集合和运算到底是什

么．

当然，你可以在任何集合上定义任何自洽的运算．从而构建一个代数结构．但如果你

定义地过于随便，那这个代数结构很可能没什么价值．所以，代数学家也并不是拍脑袋随
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便构建的代数结构——虽然代数结构的定义是完全抽象的，但它实际上来自对具体事物的

抽象化．

1.2.2 一个简单的代数结构——群

我们先来看一种最简单的代数结构——群．群并不是线性代数里的内容，在这里只是

想通过一种简单的代数结构来展示代数学家是如何把具象的东西抽象化的．

群是对变换的抽象描述，所以群可以视作一个由变换构成的集合．例如我们可以想象

一个三阶魔方，我们将魔方从一个状态拧到另一个状态，这就是一种变换．我们在此只考

虑魔方在两种状态之间的转换，而并不考虑转换的过程．例如对于一个打乱的魔方，我们

有许多种方式把它还原，但我们把它们都视为同一种变换． 我们把先 a 后 b 的复合写

作 ba 而非 ab 的原因是，

例如对一个处于状态 S 的

魔方，我们先进行 a 后进行

b 得到的状态是 b(a(S))，

我们可以不改变顺序地把它

记为 (ba)(S)．

那么变换之间有什么运算呢？最容易想到的就是，我们可以将两个变换连起来做，得

到一个复合变换．例如对于变换 a 和 b，我们可以先做 a 再做 b，得到变换 ba．代数学家

一般把这种运算称为乘法 戨·戩，虽然它和我们小学学的乘法的意义非常不同．
我们来用数学的方式思考一下变换的乘法运算有哪些性质：

戱戮 将两个变换乘在一起，得到的还是一种变换；

戲戮 将三个变换 a, b, c 按顺序复合在一起时，无论把它看作 c戨ba戩 还是 戨cb戩a，得到的

变换是一样的； 需要这条是因为乘法是一个

二元运算，我们对于 cba 必

须考虑先把哪两个乘在一起．
戳戮 存在一种“不动”的变换，把它和任何变换复合在一起都相当于该变换本身；

戴戮 对于一个变换，我们可以把它反过来做，仍然会得到一个变换．

将以上这些运算性质用数学语言表达出来，作为群乘法的公理，我们就得到了群的定

义．

定义 1.1: 群

一个群 G 是一个代数结构，上面定义了乘法，满足 一般的代数结构定义是不提

封闭性的，因为这里的乘法

定义为 G×G→ G，或者

说，代数学家定义群乘法时

假装世界上没有别的东西存

在．不过这点对我们并不是

很重要．

戱戮 封闭性：对任意 a, b ∈ G，有 ab ∈ G；
戲戮 结合律：对任意 a, b, c ∈ G 有 a戨bc戩 戽 戨ab戩c；

戳戮 存在单位元：存在 e ∈ G 使得对任意 a ∈ G 有 ae 戽 ea 戽 a；

戴戮 存在逆元：对于每个 a ∈ G 都存在 a−1 ∈ G 使得 aa−1 戽 a−1a 戽 e．

如果你愿意，你也可以把群

上的运算称为加法，那群上

就没有乘法．实际上，对于

满足交换律的群，该运算一

般的确被称为加法．

需要注意的是，在代数学家看来，一个代数系统上只有它所定义的运算，而没有其他

运算．也就是说，群里只有乘法而没有加法，因为我们没有定义加法．如果你又在群上定

义了另一种运算，那这个代数系统就不再是一般的群了．同时，群乘法并不需要满足交换

律．这也是对于变换很自然的描述——对于一个魔方，先拧左面再拧上面和先拧上面再拧

左面得到的结果是不同的．当然，在一些情况下群上的乘法也可以满足交换律，但这只是

一类特殊的群．这类特殊的群有自己独特的、一般的群没有的性质． 满足交换律的群被称为阿贝

尔群．
还需要指出的是，根

据定义，一个群并不需要包含所有可能的变换，它可以只包含一些有趣的变换，只要这些

变换满足群的四条性质即可．例如，所有只拧右边的魔方变换也构成一个群．

群最重要的用途是用于描述对称性．对于一个事物，如果某种变换可以使它看起来不

变，则我们称这个变换为对称变换．例如，把一个矩形沿着长边或短边的方向翻转，最终

矩形看起来像是没有被动过一样，这些就是对称变换．而如果我们把矩形旋转 戹戰 度，它

显然看起来就被动过了，这就不是一个对称变换．我们把对称变换逆过来、或把两个对称

变换复合，得到的结果显然仍然是对称变换．因此我们说对称变换构成了一个群．
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例 1.1. 分子点群 分子结构的对称群称为分子点群．例如，苯分子的对称操作包括以

中心为轴在平面内旋转 戶戰◦、沿着六条对称轴反射、沿着分子所在平面反射，和它们的

逆、复合和恒等变换．这些变换构成了一个群．我们把苯分子的点群记作 D6h．

分子点群在分析分子的偶极矩、旋光性和晶体结构等性质时有着重要的应用．

以上我们以群为代数结构的一个例子，讨论了群的定义的出发点和代数结构的基本特

点，并给出了群的两个简单应用．本节只是在位下一章做铺垫，让你在看到线性空间的抽

象定义时不至于太过摸不着头脑．从下一章开始，我们将开始研究线性代数里的代数结构

——线性空间．

戵
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2 线性空间

2.1 线性空间

这一节我们来学习线性代数中最基本的代数结构——线性空间．线性空间更准确地说

应该被称为向量空间，它是对平直的几何空间中的“箭头” 的刻画． 更准确地说，这个概念应被

翻译为 向量空间，而线性空

间则是指一类仿射空间．不

过许多教科书都使用了线性

空间这种叫法，而且这个名

字也很直观，我们在这里也

选择沿用这种叫法．

我们说过，一个代数结构的性质来自其上的运算．那么我们用什么运算来刻画“平

直” 呢？或者说，“平直” 这个性质的空间应该具有什么运算呢？答案是 线性组合．例

如，你站在地面上，你可以向前迈一步或向右迈一步．那么，“向前迈 戳步再向右迈 戵步”

就是一种线性组合．显然，平直的空间中我们可以做这种运算．下面我们来说明，平直的

空间，例如直线、平面等，它们的性质是线性组合是封闭的．当然，我们定义的线性组合

不能太恶心，必须有我们期望中的线性组合应有的良好性质．

首先我们来说封闭性．在下图中，左图是一个球面．如果我们选择端点在球面上的两

个向量，把它们进行线性组合，得到的向量并不一定仍然落在这个球面上．而对于平面，

无论我们如何把向量进行线性组合，得到的都一定是这个平面内的向量．这就是平直空间

的基本特征．当然，此处的平面必须无限大，而不能只是“一块” 平面．

O

u

v
戲u戫 戳v

O

v

u

戲u戫 v

或许你会问，如果向量是“画” 在曲面上的呢？例如生活在地球上的我们，可以把

“向东走 戱戰戰戰 扫扭” 的向量和“向南走 戴戰戰戰 扫扭” 的向量“加在一起” —— 我们只需要

先向东走 戱戰戰戰 扫扭，再向南走 戴戰戰戰 扫扭 即可，也就是下图的蓝色路线．这时，我们所说的

“线性组合需要有一些足够好的性质” 就派上用场了．这种向量的乘法和加法并不满足我

们希望它们有的好性质——它不满足交换律．也就是说，如果我们先向南走 戴戰戰戰 扫扭，再

向东走 戱戰戰戰 扫扭（沿着红色路线），我们最终会走到不同的地点．如果你仔细研究，你会

发现它也不满足分配律等一些其他性质．

你或许会问，难道真的不可能在一个曲面上定义一个封闭、且性质足够好的线性组合

吗？其实也不是不可能．想象一下我们有一张有弹性的平面橡皮膜，我们在上面画上网

格，这个网格可以帮助我们做线性组合．现在我们把这个橡皮膜拉伸、扭曲成一个曲面．

在这个曲面上，我们可以根据我们已经画好的网格做线性组合，且这个线性组合满足我们

期望它有的一切好性质．这样我们就在曲面上定义了封闭、性质足够好的线性组合．但是

如果你仔细想一想，会发现我们实际上在把这个曲面当作一个平面看待，因为我们每次做

线性组合时都相当于在把这个曲面拉回平面．做一个比喻，想象有一只小蚂蚁生活在这个

戶
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橡皮膜上，它不能飞到橡皮膜以外去观察整个膜的形状，也不能在膜上测量与线性组合无

关的性质（如角度等），它只能在膜上测量线性组合有关的性质，那么它就永远无法得知

自己生活在一个曲面上，它的世界与平面毫无差异！这个例子说明，如果一个空间上只定

义了线性组合这一种运算，且它的性质足够好、空间对它封闭，那么我们就可以把这个空

间当作一个平直的空间．

总结一下，对线性组合封闭、且线性组合的性质“足够好” 就是对平直空间的刻画．

我们把我们期待的线性组合应有的性质列出来，并用抽象的数学语言描述出来，就得到了

线性空间．不过线性组合中实际上包含两种运算——加法和数乘，下面的定义中单独列出

了它们的性质．

定义 2.1: 线性空间

一个域 域也是一种代数结构，我们

在本书中只考虑实数域 R 和
复数域 C．R 上的线性空间
称为实线性空间，而 C 上的
线性空间称为复线性空间．

F 上的线性空间 V 是一个代数结构，上面定义了加法 戨戫戩 和数乘 戨·戩，满足
下面八条公理

戱戮 加法的结合律：u戫 戨v 戫w戩 戽 戨u戫 v戩 戫w；

戲戮 加法的交换律：u戫 v 戽 v 戫 u；

戳戮 存在加法单位元：存在 0 ∈ V 使得对任意 v ∈ V 有 0 戫 v 戽 v；

戴戮 存在加法逆元：对于每个 v ∈ V 都存在 −v ∈ V 使得 v 戫 戨−v戩 戽 0；

戵戮 乘法的相容性：对 a, b ∈ F，v ∈ V，有 a戨bv戩 戽 戨ab戩v；

戶戮 数乘单位元：对于 F 的乘法单位元 戱，对任意 v ∈ V 有 戱v 戽 v；

户戮 数乘对于向量加法的分配律：a戨u戫 v戩 戽 au戫 av；

戸戮 数乘对于标量加法的分配律：戨a戫 b戩v 戽 av 戫 bv．

我们称 F 里的元素为标量，V 里的元素为向量． 我们一般把标量写作普通的

小写字母，把向量写作粗体

的小写字母．

再次强调，线性空间是一个代数结构．它虽然抽象化自平直的几何空间，但给出上面

的抽象定义后，代数学家们就不再关心 V 里面到底装的是什么东西，或者说它里面可以装

任何东西．但你很大程度上可以把线性空间里的元素就想象为平直空间的箭头，也就是我

们高中所学的向量．但注意，线性空间和我们脑子里想象的箭头也有重要的差别——它上

面只有“线性组合”的概念，而不存在“角度”和“长度”的概念．对于向量 u,v ∈ V，
我们没有任何理由说它们之间的角度是多少，也没有任何理由说 u 比 v 长或短，除非

u 戽 kv．当然，我们也可以在线性空间中定义长度和角度，但那就不是最基本的线性空间

了．我们会在后面的章节讨论这种定义了长度和角度的空间．

例 2.1. 我们高中所学的、由 n 个实数所构成的向量 戨x1, x2, · · · , xn戩 构成一个实线性
空间，记作 Rn．而我们也可以把 n 个复数写成一个向量 戨z1, · · · , zn戩，那么这些向量
构成一个复线性空间，记作 Cn．

在没有说线性空间是哪个域

上的时，我们通常可以通过

上下文判断出来．例如此处

说的函数空间可以是实线性

空间也可以是复线性空间，

取决于我们在讨论实变函数

还是复变函数．

例 2.2. 所有的函数构成一个线性空间，所有的连续函数构成一个线性空间，所有的可

导函数构成一个线性空间，所有的小于等于 n 次的多项式函数构成一个线性空间，所

有的满足 f ′戨x戩 戽 f戨x戩 的函数构成一个线性空间．

例 2.3. 所有的随机变量构成一个线性空间，所有期望为零的正态随机变量构成一个线

性空间．

户
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另一点需要指出的是，定义中只说加法单位元和逆元存在，却没说它们是否唯一．但

实际上，如果我们把线性空间想象成箭头的集合的话，就可以很容易意识到加法的单位元

0 是唯一的，且对任意 v 有 戰v 戽 0． 思考：如何证明？而对于每个向量 v，其逆元 −v 也是唯一的，且
−戱v 戽 −v．在数学上这也很容易证明．

2.2 基与坐标

我们上一节说到了，线性空间里的元素可以是任何东西，并不一定是我们熟悉的数学

元素．但为了方便我们表示它们，我们希望给它们分别起一个“数字代号”，这就是向量

的坐标．

首先，我们来回顾一下线性组合的概念．若 V 是 F 上的线性空间，对于其中的一组
向量 扛v1, · · · ,vn扝，我们称

n∑
i=1

aivi

为这组向量的一个线性组合，其中 a1, · · · , an ∈ F．如果一个向量写成一组向量的线性组
合，则说这个向量可以由这组向量线性表出．

线性组合和线性表出的概念很容易理解．对于一组向量 扛v1, · · · ,vn扝，它们的所有线
性组合的向量构成一个线性空间，称为这组向量 张成 的空间，记作 扳扰扡扮{v1, · · · ,vn}．
例如，一个向量张成一条直线，两个位于平面内的不共线向量张成它们所在的平面，而另

一个不位于这个平面内的向量和它们共同张成三维空间．

下图中，向量 u 和 v 位于灰色的平面内，它们张成了这个平面．所有这个平面内的

向量都可以由它们线性表出，例如向量 x；而指向平面外的向量则不可能被它们线性表

出，例如向量 y．

O

v

u

x

y

上图中，向量 u 和 v 的线性组合可以表示出灰色平面内的所有向量，它们张成了这

个平面．如果我把向量 x 也加进这个向量组呢？这个新的向量组仍然只能张成这个平面，

而不能更大的线性空间，也就是说向量 x 是“多余” 的．我们定义，一个向量组中如果

有向量可以用其余向量线性表出（“多余”），则说这个向量组是 线性相关 的，否则则说

它们是 线性无关 的．

一个线性相关的向量组可以有多个“多余的” 向量，例如在上图中，向量组 扛u,v,x扝

中任意一个向量都可以算是“多余的”，因为它们中任意一个都可以用其他两个线性表出．

但它们不“同时是多余的”，也就是删除任意一个以后，这个向量组就没有多余的向量了．

而向量组 扛u,v,x,y扝 中，y 无论如何都不是多余的．

线性相关和线性无关还有一个等价定义：如果存在一组不全是零的数 a1, · · · , an ∈ F，
使得

n∑
i=1

aivi 戽 0

则说这组向量是线性相关的，否则则说是线性无关的．很容易理解，这两种定义是等价

的．
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有了上面这些基础，我们现在给出线性空间的基的定义．

定义 2.2: 线性空间的基

对于一个线性空间 V，如果一组线性无关的向量 扛e1, · · · , en扝 张成 V，则称这组向

量是 V 的一组 基．

仍然以上面的图为例，扛u,v扝 是灰色平面的一组基，而 扛v扝 自身则不是，因为它不张

成整个平面；扛u,v,x扝也不是，因为它们线性相关．同理，扛u,v,y扝是整个三维空间的一组

基，而 扛u,v扝 则不是，扛u,v,x,y扝 也不是．

需要指出的是，一个线性空间可以有很多种（实际上是无数种）选取基的方式．例如，

扛u,v扝、扛u,x扝、扛v,x扝 都是灰色平面的基．

为线性空间选取基的意义是，对于线性空间的每一个向量，我们都有唯一的一种方式

用基的线性组合表示出这组向量．这给了我们给线性空间的每个向量“编号”的方法，这

就是坐标的来源．

定义 2.3: 坐标

对于一个线性空间 V，如果我们选定了一组基 扛e1, · · · , en扝，则每一个 v ∈ V 可以
唯一地表示为

v 戽
n∑
i=1

aiei

则我们称 坐标也可以用圆括号书写．

或者为了节省空间，也可以

写成 [a1, · · · , an]>，其中

符号“>” 的含义后面会讲

到．


a1

戮戮戮

an


为 v 在这组基下的 坐标．

需要指出的一点是，坐标只是线性空间里的向量的一个“代号”而已，它并不是向量

本身．同一个向量在不同的基下有不同的坐标，但这个向量本身并不随着我们选取的基而

变化．

在选取了基 扛e1, · · · , en扝 后，我们可以看到，V 中的每一个向量都可以与一个 n 元数

组一一对应．这就相当于我们高中所学的 n 维向量的概念．由此我们可以定义线性空间的

维数．

定义 2.4: 线性空间的维数

对于一个线性空间 V，它的一组基 扛e1, · · · , en扝 包含的向量数目称为这个线性空间
的 维数．记作 扤扩扭V 戽 n．

实际上，我们现在就引入这个定义存在一个逻辑缺陷——一个线性空间的基中包含的

向量数目是否是一定的？也就是说，是否有可能我们给 V 选取了一组基 扛e1, · · · , en扝，得
到 扤扩扭V 戽 n，然后又能选取不同长度的另外一组基 扛e′1, · · · , e′m扝，得到 扤扩扭V 戽 m？如

果我们把线性空间中的向量想象成空间中的箭头，则可以很直观地发现，一个线性空间的

基中包含的向量数是一定的．如果少了一个向量，则一定会有方向无法张成；而如果多了

戹
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一个向量，则这个向量一定可以由前面的向量线性表出．幸运的是，在数学上，这也是成

立的．因此以上是对线性空间的维数的合理定义． 思考：如何严格证明这段的

几个结论？
事实上，任意一组长度为 扤扩扭V 的线

性无关的向量组都是 V 的一组基，任意一组长度为 扤扩扭V 的、张成 V 的向量组也一定是

V 的一组基．

例 2.4. 我们高中学的向量 戨x1, · · · , xn戩 构成一个线性空间 Rn，它的一组基为

扛戨戱, 戰, 戰, · · · , 戰戩, 戨戰, 戱, 戰, · · · , 戰戩, · · · , 戨戰, 戰, 戰, · · · , 戱戩扝

所以有 扤扩扭Rn 戽 n．这组基称为 Rn 的 自自自然然然基基基．向量 戨x1, · · · , xn戩 在这组基下的坐标
为 

x1

...

xn


实际上，我们高中的使用的写法 戨x1, · · · , xn戩 就是这个向量的坐标，只不过在线性代数
中我们更习惯将坐标写成列向量的形式．不过下面为了演示选取其他向量作为基，我

们在这个例子中强行把这两种写法区分开，用高中的写法表示向量本身，而用列向量

的写法表示坐标．

我们也可以选择另外 n 个线性无关的向量作为 V 的基，例如 你可能会说，第二组基的向

量长度不为一，且不互相垂

直．但要知道，在线性空间

中，是没有长度和角度的概

念的，自然也无法说它们是

否长度唯一或是否垂直．这

组基并没有比上一组基

“差”．而且，即便在后面我

们有了长度和角度的概念，

基的定义仍然不阻止选择长

度不为一、不互相垂直的向

量组作为基．

扛戨戱, 戲, 戰, · · · , 戰, 戰戩, 戨戰, 戲, 戳, · · · , 戰, 戰戩, · · · , 戨戰, 戰, 戰, · · · , n− 戱, n戩, 戨戱, 戰, 戰, · · · , 戰, n戩扝

在这组基下，戨x1, · · · , xn戩 就不再是上面的坐标了．

例 2.5. 复数域 C 可以视作 R 上的一个二维线性空间．它的一组基为 扛戱, 扩扝．对于任意

的 a戫 b扩 ∈ C，其坐标为

[
a

b

]
；

同时，C 也可以视作 C 上的一个一维线性空间．它的一组基为 扛戱扝．对于任意的

a戫 b扩 ∈ C，其坐标为
[
a戫 b扩

]
．

例 2.6. 小于等于 n 次的多项式函数构成一个线性空间，记作 Pn．我们可以选取一组

基

扛戱, x, x2, · · · , xn扝

所以有 扤扩扭Pn 戽 n戫 戱．对于一个函数 f戨x戩 戽 a0 戫 a1x戫 a2x
2 戫 · · ·戫 anx

n ∈ Pn，它
在这组基下的坐标为 

a0

a1

...

an



2.3 线性子空间

2.3.1 线性子空间

想象一下一个三维空间 R3，如果我们过原点做一个平面，则这个平面也是一个线性

空间，但是它是包含在 R3 里的．这就是子空间的概念．

戱戰
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定义 2.5: 线性子空间

若 V 是一个线性空间，U 是 V 的一个子集，且在同样的加法和数乘的定义下构成

一个线性空间，则称 U 是 V 的一个 线性子空间，简称子空间．

理论上，我们要判定 V 的一个子集是不是子空间，需要判定线性空间的八条公理是

否成立．但由于 V 本身作为一个线性空间，已经有了足够好的性质，有一些公理自然成

立．因此，我们对子空间的判定准则有所简化．

定理 2.1: 子空间的判定定理

设 V 是 F 上的一个线性空间，则 U ⊆ V 是 V 的子空间当且仅当 U 对线性组合封

闭，即对任意 v1,v2 ∈ U，a1, a2 ∈ F 有 a1v1 戫 a2v2 ∈ U．

仍然以 R3 为例，我们过原点做一条直线或一个平面，可以得到 R3 的一个子空间．

但如果直线或平面不过原点，则无法构成 R3 的子空间，因为它对线性组合不封闭．当然，

做曲线或曲面也无法构成子空间．
数学上，我们把这种显然

的、没什么可研究的东西称

为平凡的．

例 2.7. 对于线性空间 V，V 自身和 {0} 显然都是其子空间，我们称这两个子空间为
V 的平凡子空间．

例 2.8. 设线性空间 V 的一组基为 扛e1, · · · , en扝，这组基的一个子序列是 扛ei1 , · · · , eim 扝，
则 扳扰扡扮{ei1 , · · · , eim} 是 V 的一个子空间．

例 2.9. 对于线性空间 Pn，所有次数不超过 m 的多项式函数构成 Pn 的一个子空间

戨m ≤ n戩，所有没有常数项的多项式函数构成 Pn 的一个子空间，所有以 x0 为零点的

多项式函数（x0 给定）构成 Pn 的一个子空间．

例 2.10. 所有无限长的实数数列构成一个无穷维线性空间，记作 R∞．所有收敛于 戰

的数列构成 R∞ 的一个子空间，而所有收敛于 p 6戽 戰 的数列不构成 R∞ 的一个子空
间．

2.3.2 子空间的运算

给定 V 两个子空间，它们可以通过运算得到一些新的子空间．下面我们先给出定义，

再给出解释．

定义 2.6: 子空间和交与和

设 U1, U2 是 V 的两个子空间，则
多个子空间的交可以记作

n⋂
i=1

Ui

多个子空间的和可以记作

n∑
i=1

Ui

U1 和 U2 的 交 U1 ∩ U2 也是 V 一个子空间，定义为

U1 ∩ U2 戽 {u |u ∈ U1 ∧ u ∈ U2}

U1 和 U2 的 和 U1 戫 U2 也是 V 一个子空间，定义为

U1 戫 U2 戽 {u1 戫 u2 |u1 ∈ U1,u2 ∈ U2}
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线性子空间的交就是集合的交．两个过原点的平直空间的交显然还是过原点的平直空

间．例如下图中，U1, U2, U3 都是 R3 的子空间． U1 ∩U2 就是它们的交线，而 U1 ∩U3 就

是原点 {0}．
线性子空间的和代表了它们所“张成”的子空间，或者说包含它们的最小子空间．例

如下图中，U1 戫U2 戽 U1 戫U3 戽 R3．如果我们在 U1 内部做两个或多个不同的一维子空间

（过原点的直线），则它们的和就是 U1．

O

U2

U1

U1 ∩ U2

O U1

U3

或许你已经发现了，上图中 U1戫U2 和 U1戫U3 都是 R3，但是它们有些不同．U1戫U2

中是有“多余” 的部分的，也就是我们取 U1 的一个不同于交线的一维子空间，再把它和

U2 求和，就可以得到 R3．而如果我把 U1 的一维子空间和 U3 求和，则只能得到一个二维

子空间．因此 U1 戫U2 有“多余”的成分，而 U1 戫U3 没有．这种没有多余成分的和我们

称为直和．

定义 2.7: 直和

对于多个子空间的和

U =
∑n
i=1 Ui，若对于每一

个 u ∈ U 都可以唯一地分
解为 u =

∑n
i=1 ui，其中

ui ∈ Ui，则我们称
U =

∑n
i=1 Ui 是直和，记

作
n⊕
i=1

Ui

对于和 U1 戫 U2，若对于每一个 v ∈ U1 戫 U2 都能唯一地写成 v 戽 u1 戫 u2，其中

u1 ∈ U1,u2 ∈ U2，则我们称和 U1 戫 U2 为 直和，记作

U1 ⊕ U2

仍然以上面的图为例，U1 戫 U2 不是直和，因为 U1 戫 U2 中的元素有多种分解方式，

最明显的就是对于“多余” 的方向 v ∈ U1 ∩ U2，它有无数种方式分解为两个 U1 ∩ U2 里

两个向量的和，我们可以把这两个向量一个归为 U1 一个归为 U2．而 U1 戫 U3 则是直和，

你可以验证一下，对于任意的 v ∈ U1 戫 U3，都仅有一种分解方式．

我们常常会进行将线性空间分解为多个空间的直和．在此需要指出的是，如果子空间

两两的和都是直和，也并不能说明它们共同的和是直和．例如，下图的二维平面 V 中，一

维子空间 U1、U2、U3 两两的和都是直和，即 V 戽 U1 ⊕ U2 戽 U2 ⊕ U3 戽 U1 ⊕ U3．但

U1 戫 U2 戫 U3 并不是直和．

OU1

U2

U3 V

从上面的讨论中，我们可以总结出两个空间的和是直和的特点：它们不能共同“含有

同一个方向”，也就是它们的交只能是零维子空间（包含原点）．而由于没有共同的的方

向，和空间的每个维度都仅由一个子空间提供，所以子空间的维数之和就是和空间的维

数．于是我们有以下结论．
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定理 2.2: 直和的充要条件

若 U1 和 U2 是 V 的两个子空间，则以下命题等价：

戱戮 U1 戫 U2 是直和；

戲戮 U1 ∩ U2 戽 {0}；
戳戮 扤扩扭戨U1 戫 U2戩 戽 扤扩扭U1 戫 扤扩扭U2．

实际上，我们对于和空间的维度有一个公式，对于非直和也成立．这个公式在直观上

也很容易理解——和空间的维数就是子空间维数的和，减去它们交出的“多余”的部分．

定理 2.3: 和空间的维数

若 U1 和 U2 是 V 的两个子空间，则

扤扩扭戨U1 戫 U2戩 戽 扤扩扭U1 戫 扤扩扭U2 − 扤扩扭戨U1 ∩ U2戩

最后，我们一般不讨论子空间的并，这是因为子空间作为集合的并集并不是一个线性

空间．例如上面左图中，两个平面的并就是这两个平面本身，而它显然不是一个线性空

间．事实上，子空间的和是包含这些子空间的最小的线性空间．
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3 线性映射

3.1 线性映射

代数学家除了喜欢研究代数结构本身，还喜欢研究代数结构之间“保持结构” 的映

射．这一章我们来讨论线性空间之间的这种映射——线性映射． 更一般地说，这种保持代数

结构的映射称为同态．

3.1.1 线性映射的定义

我们在第一章的鸡兔同笼问题中已经给出了线性映射的定义——保持线性组合的映

射，并以鸡戭兔空间到头戭脚空间的映射为例，解释了保持线性组合的含义．我们下面给出

线性组合的数学定义．

定义 3.1: 线性映射

设 V 和 W 是 F 上的两个线性空间，函数 T 戺 V → W 若满足对任意 u,v ∈ V、
a, b ∈ F 有 我们一般也把 T (v) 写作

Tv．
T 戨au戫 bv戩 戽 aT 戨u戩 戫 bT 戨v戩

则称 T 是 V 到 W 的一个 线性映射．V 到自身的线性映射称为 V 上的 线性变换

或 线性算子．

我们记所有 V 到 W 的线性映射的集合为 L戨V,W 戩 或 扈扯扭戨V,W 戩，把 V 上的

线性变换的集合记为 L戨V 戩 或 扅扮扤戨V 戩．

线性映射的定义本身就已经非常清晰易理解，但我们此处还是进行几何层面的一些解

释．我们希望像画函数 y 戽 f戨x戩 或 z 戽 f戨x, y戩 一样画出线性映射的图像，但遗憾的是线

性映射往往是在高维空间中的，而我们至多能想象出三维空间中的图像．我们在此举一个

低维线性映射的例子：

T 戺 R2 → R[
x1

x2

]
7→ y 戽 戳x1 − 戲x2

V ×W 称为 V 和 W 的

笛卡尔积，又称为直积或外

积，定义为

{(v,w) |v ∈ V,w ∈ W}

是一个线性映射．它在三维空间 x1戭x2戭y 中的图像显然是一个过原点的平面．实际上，对

于任意一个 T ∈ L戨V,W 戩，如果我们做出它在 V ×W 空间中的图像，则会是一个过原点

的 扤扩扭V 维的超平面．下图用一个维度表示 V，一个维度表示 W，以此方式简单地表示

出了一个线性变换．

v

w

w 戽 T 戨v戩

对于线性变换，由于定义域和值域是同一个空间，我们有另外一种思路去直观地理解

它．我们在定义域里“画上”等距网格，做线性变换后，得到的仍然会是等距网格．并且
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原点的位置不动．这相当于对空间进行了“均匀” 的“拉伸” 和“旋转”． 等距网格由两个向量 u,v

生成：au+ bv，其中

a, b ∈ Z，不需要向量长度
的定义．

例如下图表

示 R2 上的线性变换 T 戺

[
x1

x2

]
7→

[
9
4
x1 戫

3
8
x2

3
4
x1 − 9

8
x2

]
．

T−−−−→

我们再来看几个抽象线性空间中线性映射的例子．

例 3.1. 恒等映射 线性变换 I ∈ L戨V 戩，满足对任意 v ∈ V 有 I戨v戩 戽 v，称为 V 上的

恒恒恒等等等映映映射射射．

例 3.2. 微分算子 记所有无穷次可微的实函数构成的线性空间为 C∞．微分算子 d
dx
定

义为 d
dx
f 戽 f ′．它是 C∞ 上的一个线性变换．

例 3.3. 极限 对于由所有收敛的实数数列构成的线性空间 R∞，极限 扬扩扭
n→∞

是该空间到

R 上的一个线性映射．

例 3.4. 数学期望 所有存在数学期望的实随机变量构成一个线性空间．数学期望 E 是
该空间到 R 上的一个线性映射．

3.1.2 线性映射的运算

线性映射是线性代数中的重要研究对象．我们把它们当作数学对象，可以定义他们之

间的运算．我们首先定义加法和数乘，这使得线性映射也构成线性空间．

定义 3.2: 线性映射的加法和数乘

对于 T, S ∈ L戨V,W 戩 和 k ∈ F，我们以如下方式定义加法和数乘
戱戮 加法：T 戫 S ∈ L戨V,W 戩，满足对任意 v ∈ V 有 戨T 戫 S戩戨v戩 戽 Tv 戫 Sv；

戲戮 数乘：kT ∈ L戨V,W 戩，满足对任意 v ∈ V 有 戨kT 戩戨v戩 戽 k · Tv．

我们之前已经举过由函数构成的线性空间的例子了，而线性映射作为一种函数，构成

线性空间也不足为奇了．在这个空间下，加法单位元（零向量）即为零映射 O 戺 v 7→ 0．

一般来说，在线性空间上不一定能构建乘法，在线性映射构成的空间上也是一样．但

是对于一对适当的线性映射，我们可以定义其乘积．

定义 3.3: 线性映射的乘法

对于 T ∈ L戨U, V 戩, S ∈ L戨V,W 戩，我们定义它们的乘法 ST ∈ L戨U,W 戩 是 T 和 S 的

复合，即

戨ST 戩戨v戩 戽 S戨T 戨v戩戩

根据定义，线性映射的乘法也就是复合 S ◦ T．这和群乘法的动机是一样的．现在或
许你还会有些疑惑为什么称这个运算为乘法，我们在学习到矩阵时便会对此有一些理解．
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线性映射的运算与我们熟悉的数的运算类似，满足许多很好的性质，我们将一些重要

的性质列举如下．

定理 3.1: 线性映射的运算性质

线性映射的运算满足（当给定的线性映射可以做如下运算时）：

戱戮 加法的结合律：戨R戫 S戩 戫 T 戽 R戫 戨S 戫 T 戩；

戲戮 乘法的结合律：戨RS戩T 戽 R戨ST 戩；

戳戮 乘法对于加法的分配律：R戨S 戫 T 戩 戽 RS 戫RT，戨R戫 S戩T 戽 RT 戫 ST；

戴戮 数乘对于加法的分配律：k戨S 戫 T 戩 戽 kS 戫 kT；

戵戮 数乘对于乘法的结合律：戨kS戩T 戽 S戨kT 戩 戽 k戨ST 戩．

以上这些性质几乎都是显然的．在此只做三点说明：戱戮 线性映射的乘法并不一定满足

交换律，即 ST 不一定等于 TS； 戲戮 线性映射的乘法也不一定满足消去律，即 RS 戽 RT

或 SR 戽 TR 不一定能推出 S 戽 T，消去律成立的条件我们后面会进行讨论； 戳戮 需要指

出乘法结合律和群上乘法的结合律的原因相同——因为乘法是二元运算，我们计算 RST

时必须指出先把哪两个相乘．

既然有乘法，我们自然就会想是否存在除法，或者说类似于倒数 戱/T 的映射．在映射

的视角下，这相当于逆映射．我们先给出定义再给出解释．

定义 3.4: 线性变换的逆

实际上 TS = I 与 ST = I

等价，所以我们只需要定义

其中一个等式即可．

对于 T ∈ L戨V 戩，若存在 S ∈ L戨V 戩 使得

TS 戽 ST 戽 I

则称 T 是 可逆的 或 非退化的，称 S 为 T 的 逆，记作 T−1．

所谓逆映射就是我们学习过的反函数的概念．对于映射 T 戺 v 7→ w，它的逆映射是指

T−1 戺 w 7→ v，这样才能有定义里的复合 T−1T 戺 v 7→ w 7→ v．而这种定义方式类似于数

的倒数或者说除法的概念，即 t−1 · t 戽 t · t−1 戽 戱，因此我们把它类比为除法．它的性质也

与我们熟悉的除法有一些类似，例如对于线性变换的乘法等式 R 戽 TS，若 T 可逆，我们

可以将等式两侧都左乘一个 T−1，得到

T−1R 戽 T−1TS 戽 IS 戽 S

也就是有 T−1R 戽 S．注意这个 T−1 位于 R 的左边，而不能随意移到 R 的右边，这

也是为什么我们不能把它写成 R/T 的原因．同理，若 S 可逆，我们可以右乘 S−1 得到

RS−1 戽 T，这里也不能随便交换 R 和 T−1 的位置．
容易验证，L(V ) 中的可逆

映射在乘法下构成一个群．
在此需要指出的一点是，我们只讨论线性变换的逆，而不讨论一般的线性映射的逆．

这是因为一般的线性映射并不一定存在逆．考虑一个线性映射 T ∈ L戨V,W 戩，我们假设

V 和 W 的维数不同． 若维数相同，则两个线性空

间里的向量可以一一对应起

来，我们称这两个线性空间

是 同构 的，此时他们在一

定意义下可以视作同一个线

性空间．

若 扤扩扭V < 扤扩扭W，则 V 比 W “小”，由于 V 中每个元素

只有一个像，因此不是所有的 W 中的元素都有原像，自然也就不可逆．如下图左图．若

扤扩扭V > 扤扩扭W，则 V 比 W “大”，也就是说一些 V 中的元素只能被映为相同的像，而

这个像逆过来的时候无法确定该映射回哪个元素．如下图右图．
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a

b

V

x

y

z

W

T
a

b

c

V

x

y

W

T

不过，也并不是所有线性变换都可逆． 对于

f : A→ B

若 B 中每一个点都有原像，

则我们说 f 是 满射；若 A

中不同的点有不同的像，则

我们说 f 是 单射．也就是

说，第一种情况下 T 不是

满射，第二种情况下 T 不

是单射．

若 T 的值域没有覆盖整个 V，此时 T 既不是

单射也不是满射，自然也就不可逆．如下图．如果要举一个具体的例子，我们可以考虑投

影变换 Pxy，它将三维空间投影到 xy 平面上，即 Pxy 戺


x

y

z

 7→

x

y

戰

．此时不在 xy 平面

上的点没有原像，自然不能定义 T−1；同时在 xy 平面上的点又无数个原像，我们也不知

道该把它们逆回哪个点．

a

b

c

V

x

y

z

V

T

也就是说，线性变换可逆当且仅当线性变换既是单射也是满射，也就是双射．我们后

面学到其他工具后会给出进一步讨论．

最后，我们给出线性变换的逆的性质．正如我们上面的类比，逆的性质与数的倒数的

性质相似．

定理 3.2: 线性变换的逆的性质

若 S, T ∈ L戨V 戩 且都可逆，则

戱戮 戨T−1戩−1 戽 T；

戲戮 戨kT 戩−1 戽 1
k
T−1；

戳戮 戨ST 戩−1 戽 T−1S−1．

这两条性质都很显然，这里只强调一下第二条：线性映射的乘积的逆等于它们的逆交

换顺序相乘．这也是很直观的——若我们想要把“先 T 后 S” 的复合变换逆回去，则我

们应该先把 S 逆回去再把 T 逆回去．

3.2 线性映射的矩阵

3.2.1 矩阵的定义

我们之前给线性空间的每一个向量赋予了一个“编号”——坐标．这一节我们就来看
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如何把线性映射也用一些数表示出来，使得我们可以在给定一个向量的坐标时，求出其像

的坐标．

根据坐标的定义，如果一个向量 v 在基 扛e1, · · · , en扝 下的坐标为 扛v1, · · · , vn扝>，这意
味着

v 戽 v1e1 戫 · · ·戫 vnen

而根据线性映射的线性性，我们有

Tv 戽 T 戨v1e1 戫 · · ·戫 vnen戩 戽 v1Te1 戫 · · ·戫 vnTen

这意味着，在给定了一组基后，我们只需要知道 T 作用在基向量上的像 Te1, · · · , Ten 的
坐标，就可以直接用 v 的坐标分量作为组合系数对它们进行线性组合，得到像的坐标．下

面我们来计算两个具体的例子．

例 3.5. 如果我们给 R2 选定一组基 e1, e2，并且知道这组基在线性变换 T ∈ L戨R2戩 下

的像的坐标为

[
a1

a2

]
和

[
b1

b2

]
，则对于任意一个向量 v，若它的坐标是

[
x

y

]
，也就是说

v 戽 xe1 戫 ye2，则它被 T 映为

T

([
x

y

])
戽 T 戨xe1 戫 ye2戩

戽 xTe1 戫 yTe2

戽 x

[
a1

a2

]
戫 y

[
b1

b2

]

戽

[
xa1 戫 yb1

xa2 戫 yb2

]

例 3.6. 考虑一个映射 T ∈ L戨R2,R3戩，如果我们给 R2 选定一组基 e1, e2，给 R3 选

定一组基 e′1, e
′
2, e
′
3，并且知道 e1, e2 在线性变换 T 下的像在基 e′1, e

′
2, e
′
3 下的坐标为

a1

a2

a3

 和

b1

b2

b3

，则对于任意一个向量 v 戽

[
x

y

]
，它被 T 映为

T

([
x

y

])
戽 T 戨xe1 戫 ye2戩

戽 xTe1 戫 yTe2

戽 x


a1

a2

a3

戫 y


b1

b2

b3



戽


xa1 戫 yb1

xa2 戫 yb2

xa3 戫 yb3


观察上面的例子可以发现，对于 T ∈ L戨V,W 戩，我们选好 V 和 W 的各自的一组基，
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如果 V 的基在 T 下的像的坐标为


a11

a21

戮戮戮

am1

 , · · · ,

a1n

a2n

戮戮戮

amn

．则对于一个输入向量 x 戽


x1

戮戮戮

xn

，
其输出应为

Tx 戽


a11x1 戫 a12x2 戫 · · ·戫 a1nxn

戮戮戮

am1x1 戫 am2x2 戫 · · ·戫 amnxn


我们把上面式子中的 x1, · · · , xn 拿走，只把系数留下，并不改变排列方式，就引出

了线性映射的矩阵的概念．换一种说法就是，把定义空间的基在线性变换下的像作为列向

量，横向排成一个矩形．

定义 3.5: 线性映射的矩阵

设 T ∈ L戨V,W 戩，其中 扤扩扭V 戽 n，扤扩扭W 戽 m．我们选定 V 的一组基 扛e1, · · · en扝
和W 的一组基 扛e′1, · · · e′m扝， 我们一般把矩阵用大写粗体

字母表示．
并把 V 的基在 T 下的像 Te1, · · · , Ten表示为 扛e′1, · · · e′m扝

下的坐标 我们也把 A 的矩阵元写作

Aij或(A)ij


a11

a21

戮戮戮

am1

 , · · · ,

a1n

a2n

戮戮戮

amn

．我们把这些列向量排成一行，得到一个 m× n 的矩

形数组，称为线性映射 T 在基 扛e1, · · · en扝、扛e′1, · · · e′m扝 下的 矩阵． 矩阵也可以用圆括号书写．

A 戽


a11 a12 · · · a1n

a21 a22 · · · a2n

戮戮戮
戮戮戮

戮 戮 戮
戮戮戮

am1 am2 · · · amn


我们下面以 R2 上的线性变换为例，进行一个几何直观上的解释．对于线性变换 T ∈

L戨V 戩，它只涉及一个空间 V，我们给 V 选定了一组基后，一个向量和它的像的坐标就都

确定了．我们一般不会用一组基表示原像的坐标，用另一组基表示像的坐标．假设我们选

的基是 扛e1, e2扝，它们被线性变换 T 映为 Te1 和 Te2，如下图所示．

e1

e2
Te1

Te2

我们发现，基向量的像 Te1 和 Te2 在基 扛e1, e2扝 下的坐标为 扛戱, 戱扝> 和 扛戲,−戱扝>．因

此，线性变换 T 在基 扛e1, e2扝 下的矩阵为

[
戱 戲

戱 −戱

]
．我们很容易发现线性变换的矩阵一定

是一个 n× n 的正方形矩阵，称为方阵．
把线性映射写成矩阵后，线性映射对向量的作用在给定的基下可以写成矩阵与坐标的

戱戹
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运算．我们称这种运算为矩阵与向量的乘法．也就是定义矩阵与向量的乘积 Ax为 Tx的

在给定的基下坐标．我们上面已经严格推导出了这个结果的公式． 我们一般只把有限维线性空

间上的线性映射写成矩阵的

形式，而对于无限维线性空

间一般写成分量相乘求和的

形式，这是因为一个无限大

的矩阵不太容易理解．

定义 3.6: 矩阵与向量的乘法

矩阵与列向量的乘法定义为
a11 a12 · · · a1n

a21 a22 · · · a2n

戮戮戮
戮戮戮

戮 戮 戮
戮戮戮

am1 am2 · · · amn




x1

x2

戮戮戮

xn

 戽


a11x1 戫 a12x2 戫 · · ·戫 a1nxn

a21x1 戫 a22x2 戫 · · ·戫 a2nxn
戮戮戮

am1x1 戫 am2x2 戫 · · ·戫 amnxn


注意上式中，一个 m × n 的矩阵要与一个 n 维列向量相乘，得到一个 m 维列向量．

它实际上就是把向量“横过来”，与矩阵的每一行对应元素相乘再相加，最后再把结果竖

着排起来．

此时我们终于触及到了线性代数课上所学的矩阵的本质——矩阵是线性映射在给定基

下的表示．有的地方会说矩阵就是线性映射，但这句话实际上没说完整．就像向量与其坐

标的关系一样，一个线性映射在不同的基下可以有不同的矩阵，但是线性映射本身是不随

着基的变化而变化的．

下面让我们来看一些具体的线性映射的矩阵．

例 3.7. 恒等映射与伸缩映射的矩阵 对于恒等映射 I ∈ L戨V 戩，任何一组基在 I 下都不

发生变化，即还是这些基自身．写成坐标就是

I 戺 ei 7→ ei 戽



戰
...

戱
...

戰


以上的向量中第 i 个元素为 戱，其他全部为 戰．我们把这些向量按顺序横向排列，即可

得到恒等映射的矩阵，称为 单单单位位位矩矩矩阵阵阵．单位矩阵的主对角线上的元素全部为 戱，其余

元素全部为 戰． 如果矩阵中一部分是空着的，

那代表这部分全部都是 0．

有时为了强调矩阵的维度，

我们会把 n× n 的单位矩阵
记为 In．

I 戽


戱

戱
. . .

戱


注意，无论我们选取哪一组基，我们都会得到相同的矩阵．即，恒等映射在任意一组基

下的矩阵都是单位矩阵．

而对于伸缩映射 T 戺 v 7→ kv，它将一个向量拉伸 k 倍，那么它的矩阵自然就是 kI．由

此可以看出单位矩阵 I 的地位类似于数中的 戱．

例 3.8. 导数与雅可比矩阵 对于一个一元函数 y 戽 f戨x戩，若它在点 x 戽 扞x 处可导，那

么我们将函数在这点附近“放大” 后会接近一条直线，即函数在这点处的切线．也就

戲戰
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是说，当 x 从 扞x 处改变了很小的 戁x 后，y 相应的改变 戁y 近似为 戁x 的正比例函数

（即线性函数）戁y ≈ f ′戨扞x戩戁x．我们把这个线性近似称为函数 y 戽 f戨x戩 在点 扞x 处的 微微微

分分分，记作 扤y．我们把微分的自变量写作 扤x，于是有

扤y 戽 f ′戨扞x戩扤x

下图以几何的方式显示了我们上面讨论的微分的意义．

扞x

x

y y 戽 f戨x戩

戁x

戁y扤y

扤y 戽 f ′戨x戩扤x

在不强调某个特定的点时，我们常常会把微分写作 扤y 戽 f ′戨x戩扤x．

而对于一个多元函数 戨y1, · · · , ym戩 戽 f戨x1, · · · , xn戩，我们也可以利用上面的线性近似
的思想．我们下面考虑一个简单一点的函数 戨y1, y2戩 戽 f戨x1, x2戩．这个函数可以视作

二维空间 R2 上的一个变换，它把点 扛x1, x2扝
> 变为 扛y1, y2扝

>．不过这个变换不是线性

的，所以它可以把等距网格扭曲甚至折叠成奇怪的样子．但是如果我们将一个可微的

点 扛扞x1, 扞x2扝
> 附近放大，会发现周围弯曲的网格也近似是平直、等距的了．也就是说，

在这点附近，若自变量变化了 扛戁x1,戁x2扝
>，相应因变量变化了 扛戁y1,戁y2扝

>，而二者

的关系也可以被近似为一个线性变换．

f

≈ L(x1,x2)

(x̂1, x̂2)

(x̂1 + ∆x1, x̂2 + ∆x2)

f(x̂1 + ∆x1, x̂2 + ∆x2)

f(x̂1, x̂2)

x1

x2

由于多元函数的输入是多个数，也就是坐标，相当于直接对空间取了自然基．我们现在

来求这个近似线性变换的矩阵．现在考虑只有 x1 变为了 x1 戫戁x1，也就是点沿着第一

个基向量移动了 戁x1 的距离．此时像点的 y1 坐标近似移动了
∂y1

∂x1

戁x1，y2 近似移动

了
∂y2

∂x1

戁x1． 注意，下面所有的偏导数都

是在点 (x̂1, x̂2) 的值．但为

了不写的太过复杂，我们将

这一点在记号中省略了．

也就是说像移动了

[
∂y1

∂x1

,
∂y2

∂x1

]>
戁x1．这里面 戁x1 的系数就是我们要求

的矩阵的第一列．

戲戱



戳 线性映射

戁x1 戁y

∂y1
∂x1

扤x1

∂y2
∂x1

扤x1

L

用同样的方式，我们可以求出该矩阵的第二列．最终求得的线性变换的矩阵为
∂y1

∂x1

∂y2

∂x1

∂y1

∂x2

∂y2

∂x2


这实际上是在说，在点 扛扞x1, 扞x2扝

> 附近，若自变量变化了 扛戁x1,戁x2扝
>，因变量相应变化

了 扛戁y1,戁y2扝
>，则二者的关系可以线性近似为[

扤y1

扤y2

]
戽

[
∂y1
∂x1

∂y2
∂x1

∂y1
∂x2

∂y2
∂x2

][
扤x1

扤x2

]

这个矩阵称为函数 戨y1, y2戩 戽 f戨x1, x2戩 的 雅雅雅可可可比比比矩矩矩阵阵阵，记作 Jxy、Dxy 或
∂戨y1, y2戩

∂戨x1, x2戩
．

对于一个一般的函数 戨y1, · · · , ym戩 戽 f戨x1, · · · , xn戩，它的雅可比矩阵是一个 n ×m 的
矩阵，其矩阵元为 (

∂戨y1, · · · , ym戩
∂戨x1, · · · , xn戩

)
ij

戽
∂yj
∂xi

总结起来，函数的微分就是函数局部的线性近似．一元函数的线性近似的系数是导数，

而多元函数的线性近似可以被写成一个矩阵，即雅可比矩阵．

例 3.9. 马尔可夫链 考虑一个随时间变化（时间是离散的，即只能取整数）的随机变量

Xt（称为 随随随机机机过过过程程程），其状态可能的取值为 {戱, · · · , n}．若该随机变量在下一时刻各
状态的概率仅由当前状态决定，而与以往的状态无关，则称该随机过程为一个 马马马尔尔尔可可可

夫夫夫链链链．即对任意 t 有

P 戨Xt+1 |Xt, Xt−1, · · · 戩 戽 P 戨Xt+1 |Xt戩

我们记 pij 为从状态 i 经一步转变为状态 j 的概率，称为单步转移概率，即

pij 戽 P 戨Xt+1 戽 j |Xt 戽 i戩

那么如果已知 X 在时间 t 的各个状态的概率，现在我们希望求在下一时间点 t 戫 戱 时

X 的各个状态的概率．对于任意给定的 Xt+1 的状态，我们可以简单地把从各个状态

转移来的概率求和，即

P 戨Xt+1 戽 j戩 戽

n∑
i=1

P 戨Xt+1 戽 j,Xt 戽 i戩

戽
n∑
i=1

P 戨Xt+1 戽 j |Xt 戽 i戩P 戨Xt 戽 i戩
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若我们再记 π
(j)
t 为 X 在时间 t 时为状态 j 的概率，即 π

(j)
t 戽 P 戨Xt 戽 j戩，则上式可

以记作 注意此处的矩阵的第 i 行第

j 列的元素是 pji 而非 pij．

事实上，我们把 pij 按正常

行列顺序排列成的矩阵 P

称为状态转移矩阵，即

(P )ij = pij，而我们一般

也把 π 排列成行向量，这样

这个矩阵乘法用我们后面会

给出的定义可以写作

πt+1 = πtP

π
(j)
t+1 戽

n∑
i=1

pijπ
(i)
t

这可以记为矩阵与向量的乘法
π

(1)
t+1

π
(2)
t+1

...

π
(n)
t+1

 戽


p11 p21 · · · pn1

p12 p22 · · · pn2

...
...

. . .
...

p1n p2n · · · pnn




π

(1)
t

π
(2)
t

...

π
(n)
t


3.2.2 矩阵的运算

矩阵是线性映射的表示．既然线性映射可以进行加法、数乘和乘法，那我们也可以把

这种运算迁移到他们对应的矩阵上．我们希望定义矩阵的运算，使得线性变换在经过运算

后的矩阵等于它们的矩阵经过运算．

对于线性映射的加法和数乘，它们对应的矩阵运算非常容易推出，也非常直观——就

是对应的矩阵元的运算．在此不赘述推导，直接给出定义．注意线性映射的加法只能定义

在同一对线性空间之间的映射上，这就导致矩阵加法只能定义在形状相同的矩阵上．这也

是非常容易理解的．

定义 3.7: 矩阵的加法和数乘

两个矩阵的加法定义为
a11 · · · a1n

戮戮戮
戮 戮 戮

戮戮戮

am1 · · · amn

戫


b11 · · · b1n
戮戮戮

戮 戮 戮
戮戮戮

bm1 · · · bmn

 戽


a11 戫 b11 · · · a1n 戫 b1n

戮戮戮
戮 戮 戮

戮戮戮

am1 戫 bm1 · · · amn 戫 bmn


矩阵的数乘定义为

k


a11 · · · a1n

戮戮戮
戮 戮 戮

戮戮戮

am1 · · · amn

 戽


ka11 · · · ka1n

戮戮戮
戮 戮 戮

戮戮戮

kam1 · · · kamn



定义了矩阵的加法和数乘后，我们就可以说所有形状相同的矩阵构成一个线性空间，

记为 Fm×n，其中 F 是线性空间基于的域．Fm×n同构于线性映射所构成的空间 L戨V,W 戩．

一个m×n的矩阵有mn个自由变量，也就是 扤扩扭Fm×n 戽 mn．这也就说明 扤扩扭L戨V,W 戩 戽

扤扩扭V × 扤扩扭W．

下面我们希望定义线性映射的乘法对应的矩阵运算．这种运算并不是非常直观，所以

在此先进行一定的说明．我们设 T ∈ L戨V,W 戩, S ∈ L戨U, V 戩，其中 扤扩扭W 戽 m,扤扩扭V 戽

n,扤扩扭U 戽 r，且 T 和 S 在选定的基下的矩阵分别为 A 和 B．则 A 是一个 m× n 的矩
阵，B 是一个 n × r 的矩阵．线性变换的乘积 TS ∈ L戨U,W 戩，这说明 C 戽 AB 是一个

m× r 的矩阵．由于以上的字母非常多，我们把它们表示成一个图

U
dim=r

S−−−−−→
B∈Fn×r

V
dim=n

T−−−−−→
A∈Fm×n

W
dim=m
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我们希望求出复合变换 TS 的矩阵 C 戽 AB，也就是希望求出 U 的基 e1, · · · , er 在
复合变换 TS 下的像 TSe1, · · · , TSer 的坐标．根据我们对于矩阵的定义，将这些像坐标
作为列向量，横向排列起来，即可得到矩阵 C．

首先我们看第一步变换 S．根据 S 的矩阵 B 的定义，e1, · · · , er 首先被 S 映射为 B

的列．例如 e1 被映为 B 的第一列

e1
S7→Be1 戽


b11

戮戮戮

bn1


接下来我们来看第二步变换 T．我们想求出这个向量 Be1 在 T 下的像的坐标．这就

是我们之前定义的矩阵与向量的乘法
b11

戮戮戮

bn1

 T7→A


b11

戮戮戮

bn1

 戽


a11b11 戫 a12b21 戫 · · ·戫 a1nbn1

戮戮戮

am1b11 戫 am2b21 戫 · · ·戫 amnbn1


以上只是以 e1 为例，求出了 TSe1．但我们可以用这种方式求出任意一个基向量 ej

的像

ej
S7→ T7→ABej 戽


a11b1j 戫 a12b2j 戫 · · ·戫 a1nbnj

戮戮戮

am1b1j 戫 am2b2j 戫 · · ·戫 amnbnj

 戽


∑n

k=1 a1kbkj
戮戮戮∑n

k=1 amkbkj


注意到 ABej 就是 C 戽 AB 的第 j 列，或者说 ABej 的第 i 个元素就是 cij．所以

我们可以得到 C 的表达式．由于这个表达式的项数较多，我们使用矩阵元的方式写出矩

阵乘法的规则．

定义 3.8: 矩阵的乘法

若 A ∈ Fm×n，B ∈ Fn×r，则它们的乘积 C 戽 AB ∈ Fm×r 定义为

cij 戽
n∑
k=1

aikbkj

由于这个运算规则比较复杂，我们在此进行进一步说明．我们把矩阵 A 的第 i 行拿

出来，它有 n 个数；我们把矩阵 B 的第 j 列拿出来，它也有 n 个数．我们把它们对应项

相乘再相加，就得到了乘积矩阵 C 的第 i, j 处的元素．
戮戮戮

戮戮戮
戮戮戮

ai1 · · · ain
戮戮戮

戮戮戮
戮戮戮



· · · b1j · · ·

· · ·
戮戮戮 · · ·

· · · bnj · · ·

 戽


戮 戮 戮

戮戮戮
戮戮戮

· · · cij · · ·
戮戮戮

戮戮戮
戮 戮 戮


观察矩阵乘法的规律还可以发现，如果我们把一个 n 维向量看作一个 n × 戱 的矩阵，

那么矩阵与向量的乘法完全符合矩阵乘法的定义．而向量的加法和数乘显然也与矩阵的加

法和数乘一致，因此我们后面的一切运算中都默认向量是一个矩阵．

下面我们来看一下矩阵运算的性质．由于矩阵表示的就是线性变换，因此它的运算性

质也和线性变换完全相同．我们可以一成不变地把线性映射的运算性质搬过来．

戲戴
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定理 3.3: 矩阵的运算性质

矩阵的运算满足（当给定的矩阵可以做如下运算时）：

戱戮 加法的结合律：戨A戫B戩 戫C 戽 A戫 戨B 戫C戩；

戲戮 乘法的结合律：戨AB戩C 戽 A戨BC戩；

戳戮 乘法对于加法的分配律：A戨B戫C戩 戽 AB戫AC，戨A戫B戩C 戽 AC戫BC；

戴戮 数乘对于加法的分配律：k戨A戫B戩 戽 kA戫 kB；

戵戮 数乘对于乘法的结合律：戨kA戩B 戽 A戨kB戩 戽 k戨AB戩．

这几条性质几乎都是显然的．对于乘法结合律，如果只看矩阵乘法的定义的话，会非

常难以理解，而且数学证明也较为繁琐．但如果牢记矩阵代表着线性映射的话，这条也就

是不言自明的了——无论先计算哪对乘积，最终得到的都是三个变换按顺序的复合变换的

矩阵．

接下来，我们定义逆变换对应的矩阵——矩阵的逆．注意到恒等映射的矩阵永远是单

位矩阵 I，因此我们用单位矩阵定义矩阵的逆．

定义 3.9: 矩阵的逆

对于一个方阵 A，如果存在一个方阵 B 使得 同样，AB = I 和

BA = I 是等价的，我们

只需用其中一个定义即可．
AB 戽 BA 戽 I

则称 A 是可逆的，称 B 是 A 的 逆，记作 A−1．

同样，我们只对方阵定义逆的概念，而且不是所有方阵都可逆．矩阵可逆的条件和求

逆的方式我们后面会学到．矩阵的逆的性质也可以把线性映射的逆的性质照搬过来．

定理 3.4: 矩阵的逆的性质

若 A,B 是同阶方阵且都可逆，则

戱戮 戨A−1戩−1 戽 A；

戲戮 戨kA戩−1 戽 1
k
A−1；

戳戮 戨AB戩−1 戽 B−1A−1．

最后，我们来学习一种在线性变换中没有提到的运算——转置．矩阵的转置所对应的

线性变换的运算实际上并不存在于简单的线性空间中，而需要有其他运算后才可以定义．

但矩阵的转置本身的定义却非常直接，因此我们在此和前面的运算一并给出定义．

定义 3.10: 矩阵的转置

若矩阵 A 是一个 m× n 的矩阵，则定义其转置矩阵 A> 是一个 n×m 的矩阵，它
将矩阵沿着左上至右下的轴翻转过来．即

戨A>戩ij 戽 aji

同样，我们也直接给出转置的性质．

戲戵
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定理 3.5: 矩阵转置的性质

矩阵的运算满足（当给定的矩阵可以做如下运算时）：

戱戮 戨A>戩> 戽 A；

戲戮 戨A戫B戩> 戽 A> 戫B>；

戳戮 戨kA戩> 戽 k戨A>戩；

戴戮 戨AB戩> 戽 B>A>；

戵戮 戨A−1戩> 戽 戨A>戩−1．

由于我们没有学习对矩阵的转置对应的线性变换的运算，因此此处也难以直观地解释

以上几条性质．但前三条根据转置的定义即可一眼看出．此处给后两条做出简单的代数证

明．

证明. 性质 戳 根据矩阵转置和乘法的定义，我们直接可以写出

戨戨AB戩>戩ij 戽 戨AB戩ji

戽
n∑
k=1

ajkbki

戽
n∑
k=1

bkiajk

戽
n∑
k=1

戨B>戩ik戨A
>戩kj

而最后一行就是 B>A> 的第 i, j 处元素的定义．因此得证．实际上，矩阵乘法是对第一

个矩阵的列、第二个矩阵的行进行线性组合．如果我们要通过转置将行列关系反过来，自

然也需要将顺序反过来．

证明. 性质 戴 戨A−1戩>A> 戽 戨AA−1戩> 戽 I> 戽 I．因此 戨A−1戩> 是 A> 的逆，即 戨A−1戩> 戽

戨A>戩−1．

下面我们来看一看矩阵运算的一些实例．

例 3.10. 复合函数多元函数和反函数的雅可比矩阵 我们在微积分里学过，对于两个一

元函数 y 戽 f戨x戩 和 z 戽 g戨y戩，它们的复合 g戨f戨x戩戩 对于 x 的导数为二者导数的乘积

g′戨f戨x戩戩f ′戨x戩，即
扤z

扤x
戽

扤z

扤y

扤y

扤x

在例 戳.戸. 中我们讲到，在多元函数中，导数由雅可比矩阵代替，而数的乘法也由矩阵

乘法代替．对于多元函数 戨y1, · · · , yn戩 戽 f戨x1, · · · , xm戩 和 戨z1, · · · , zr戩 戽 g戨y1, · · · , yn戩，
复合函数 g ◦ f 的雅可比矩阵就是两个雅可比矩阵的乘积，即

∂戨z1, · · · , zr戩
∂戨x1, · · · , xm戩

戽
∂戨z1, · · · , zr戩
∂戨y1, · · · , yn戩

∂戨y1, · · · , yn戩
∂戨x1, · · · , xm戩

同时，这也说明了 反反反函函函数数数定定定理理理：若函数 戨y1, · · · , yn戩 戽 f戨x1, · · · , xm戩 的雅可比矩阵在
某点处可逆，则该函数在此点附近有反函数 戨x1, · · · , xm戩 戽 f−1戨y1, · · · , yn戩，且反函数

戲戶
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在该点的的雅可比矩阵即为逆矩阵，即

∂戨x1, · · · , xm戩
∂戨y1, · · · , yn戩

戽

(
∂戨y1, · · · , yn戩
∂戨x1, · · · , xm戩

)−1

例 3.11. 马尔可夫链的多步转移概率 在例 戳.戹. 中我们讲到马尔可夫链的一步转移概率

概率 pij 戽 P 戨Xt+1 戽 j |Xt 戽 i戩．我们现在来定义 n 步转移概率 p
(n)
ij ，它是 Xt 由状态

i 经过 n 步后恰好落在状态 j 的概率，即

p
(n)
ij 戽 P 戨Xt+n 戽 j |Xt 戽 i戩

下面我们先来看两步转移概率 p
(2)
ij ．Xt 可以经过任何一个中间状态 k 后再到达状态 j，

最终的概率就是所有这些情况的相加，即 注意第二行求和内的第二个

因子，由于马尔可夫性，在

给定了 Xt+1 后，Xt+2 与

Xt 无关，因此可以省去

Xt = i，从而简化为 pkj．

p
(2)
ij 戽

n∑
k=1

P 戨Xt+2 戽 j,Xt+1 戽 k |Xt 戽 i戩

戽
n∑
k=1

P 戨Xt+1 戽 k |Xt 戽 i戩P 戨Xt+2 戽 j |Xt+1 戽 k,Xt 戽 i戩

戽
n∑
k=1

pikpkj

这可以用矩阵写成 P (2) 戽 P 2．更一般地，我们有 P (m+n) 戽 P (m)P (n) 或 P (n) 戽 P n．

这称为 扃扨扡扰扭扡扮戭手扯扬扭扯执扯扲扯扶 方程．

3.3 基变换

3.3.1 基变换与坐标变换

我们之前说过，线性空间中的元素是向量，它与基无关．在不同的基下，同一个向量

会被赋予不同的坐标．那么同一个向量在不同基下的坐标有什么关系呢？

假设我们给线性空间 V 选定了一组基 扛e1, · · · , en扝，向量 v在其中的坐标是 扛v1, · · · , vn扝>．
现在我们选定了另外一组基 扛e′1, · · · , e′n扝，现在我们想问，v在这组基下的坐标 扛v′1, · · · , v′n扝>

是什么．

首先我们要把新的基用旧的基表示出来．由于基也是由向量构成的，因此新的基向量

可以有在旧的基下的坐标．假设 e′i 在旧的基下的坐标是 扛p1i, · · · , pni扝>，或者说

e′i 戽
n∑
k=1

pkiek 戽
[
e1 · · · en

]
p1i

戮戮戮

pni


注意我们使用矩阵乘法的方式代替求和公式，表示基向量的线性组合．我们可以把上式横

向组合成矩阵形式，来用一个式子表示所有基的变换．[
e′1 · · · e′n

]
戽
[
e1 · · · en

]
P

其中

P 戽


p11 · · · p1n

戮戮戮
戮 戮 戮

戮戮戮

pn1 · · · pn1


戲户
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我们称此处的 P 为基变换的 过渡矩阵．另外需要指出一点的是，
[
e1 · · · en

]
和[

e′1 · · · e′n

]
都是由基向量组成的行向量（戱 × n 的矩阵），你可以把它理解为一个不是

由数构成的“形式行向量”，并把它按照正常的矩阵相乘的规则进行运算．同时，你也可

以把每个 ei 或 e′i 都写成一个列向量形式的坐标，这样这个行向量就成了一个 n× n 的矩
阵．

我们知道，v在基 扛e1, · · · , en扝和 扛e′1, · · · , e′n扝下的坐标分别为 扛v1, · · · , vn扝>和 扛v′1, · · · , v′n扝>．
这意味着

v 戽
[
e1 · · · en

]
v1

戮戮戮

vn

 戽
[
e′1 · · · e′n

]
v′1
戮戮戮

v′n


而根据基变换公式，我们又可以把上式写成

[
e1 · · · en

]
v1

戮戮戮

vn

 戽
[
e1 · · · en

]
P


v′1
戮戮戮

v′n


虽然我们还没有讨论过矩阵可逆的条件，但我们现在先告诉大家由基构成的矩阵

[
e1 · · · en

]
一定是一个可逆矩阵．因此我们可以在等式两边的左侧乘上它的逆，把这个矩阵消掉，得

到 
v1

戮戮戮

vn

 戽 P


v′1
戮戮戮

v′n


我们一般都希望用旧的坐标表示出新的坐标．在此告诉大家 P 也一定是可逆的，因此我

们可以同样通过乘逆的方式把 P 的逆乘到左边去，得到

P−1


v1

戮戮戮

vn

 戽


v′1
戮戮戮

v′n


这就是我们希望得到的坐标变换公式．

我们对此公式多做一些解释．由于 P 的每一列都表示新的基向量在旧的基下的坐标，

所以它可以看作一个线性变换在旧的基下的矩阵，这个线性变换把 ei 映为 e′i．即

e′i 戽 Pei

例如 ei 在旧的基下的坐标只有第 i 项为 戱，其他全部为 戰．我们用 P 乘上它，自然得到

了 P 的第 i 列，也就是 e′i 在旧基下的坐标．我们把上式对于每个 i 横向排起来，得到下

式．为了方便后面讨论，我们把上式称为式 戳戮戳戮戱戮戱，把下式称为 戳戮戳戮戱戮戲戮[
e′1 · · · e′n

]
戽 P

[
e1 · · · en

]
这个式子与我们上面给出的基变换公式 扛e′1 · · · e′n扝 戽 扛e1 · · · en扝P 很相似，但等式

右边的两个矩阵交换了位置．但是我们知道，矩阵相乘是不能随便换位置的．那么两个式

子哪个是正确的呢？答案是，基变换公式永远正确，而式 戳戮戳戮戱戮戲 仅在旧基下成立．或者

戲戸
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说，基变换公式本身的表述方式与基无关．无论我们在哪组基下（旧的基、新的基、哪怕

第三组不同的基）写出 扛e1, · · · , en扝 和 扛e′1, · · · , e′n扝 的坐标，基变换公式都成立．但是，式
戳戮戱戮戱戮戱 和 戳戮戳戮戱戮戲 只在旧基下成立，也就是说只有我们把 扛e1, · · · , en扝 和 扛e′1, · · · , e′n扝 都写
成旧的基下的坐标，这两个式子才成立．而在这种情况下，扛e1 · · · en扝 实际上就是单位矩
阵，它从哪边乘 P 都是 P 本身．因此在旧基下，它和基变换公式在代数上等价．

我们在此再啰嗦几句．基变换公式中的 P 并不是我们之前理解的矩阵的常规意义（线

性映射在给定基下的表示）．我们也可以看到，它在式子中的位置和表示线性映射时的位

置不同．你可以认为此时的矩阵 P 就是专门用来表示基变换的，这是一种与线性映射不同

的、全新的意义．它变换的不是坐标，而是基本身，自然也不需要指定基．而在式 戳戮戳戮戱戮戱

和 戳戮戳戮戱戮戲 中，P 就是代表我们之前理解的线性映射在给定的基下的表示——这组基就是

旧基．只有我们把基向量都写成旧基下的坐标，这个式子才成立．

最后我们再解释一下，为什么基变换使用矩阵 P，而坐标变换使用它的逆 P−1 呢？

这其实也很好理解．例如我们有一个长度为 戱 扭 的向量 a，如果我们选择 戱 扣扭 长度的基

向量，那么 a 的坐标就是 戱戰戰． 借用张量的名词来说，我们

可以说在基变换下，基向量

是 协变 的，而坐标是 逆变

的．

而如果我们把这个基向量延长 戱戰戰 倍，也就是基向量变

为 戱 扭，那么 a 的坐标就变成 戱 了．也就是说，基变换和坐标变换的方向应该是相反的，

这样才能保证代表的向量不变．

3.3.2 线性映射在不同基下的矩阵

上一节我们讨论了同一个向量在不同的基下的表示的坐标表示．而我们知道，线性映

射在不同的基下的矩阵也是不同的．那么不同基下线性映射的矩阵的关系又是什么呢？

我们考虑一个线性映射 T ∈ L戨V,W 戩，它在 V 和 W 的一组基下矩阵为 A．也就是

说对于 V 中的一个向量坐标 x 和 W 中的一个向量坐标 y 有

y 戽 Ax

现在我们希望用另一组基表示这个线性变换．我们设 V 中的基变换矩阵为 Q，W 中

的基变换矩阵为 P，并且基变换后两个向量的坐标分别变为 x′ 和 y′．则有 x 戽 Qx′，

y 戽 Py′．把这两个式子带入上式，得到

Py′ 戽 AQx′

我们把 P 移到右侧，得到

y′ 戽 P−1AQx′

也就是说，T 在新的基下的矩阵为 B 戽 P−1AQ．我们称这个矩阵与原矩阵 A 相抵．也

就是说，相抵的矩阵代表同一个线性映射在不同基下的表示．

线性变换在不同基下的矩阵之间的关系其实很好理解：对于向量在新基下的坐标，我

们先用 Q 把它转换回旧基下的坐标，再用旧基下的矩阵 A 对其进行映射，最后再用 P−1

把它转换回新基下的坐标．这一系列操作就是三个矩阵的复合，也就是乘法．

V

V

W

W

新基

旧基

Q

A

B = P−1AQ

P−1

戲戹
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而如果 T 是 V 上的一个线性变换，那么我们在变换前后都在 V 内，因此会使用同一

组基，自然选取新基的基变换矩阵也要相同．设基变换矩阵为 P，则 T 在新基下的矩阵

为 B 戽 P−1AP．我们称这个矩阵与原矩阵 相似．

矩阵的相抵和相似都是等价关系，即满足：（用符号“∼” 表示相似或相抵） 满足自反性、对称性和传递

性的关系称为等价关系．
戱戮 自反性：A ∼ A；
戲戮 对称性：若 A ∼ B 则 B ∼ A；
戳戮 传递性：若 A ∼ B，B ∼ C 则 A ∼ C．
矩阵的相似和相抵（尤其是相似）是非常重要的内容．我们在后面的很多章节都会使

用到它．

3.4 秩

3.4.1 秩的定义

下面我们来讨论矩阵的一个非常重要的参数——秩．首先我们来介绍两个基本概念．

对于一个线性映射 T ∈ L戨V,W 戩，我们定义两个有关的子空间：

戱戮 像空间 扉扭 T，又称为值域 扲扡扮执扥 T，是指 T 的所有像构成的空间，它是 W 的

子空间．

扉扭 T 戽 {Tv | v ∈ V }

戲戮 核 扫扥扲T，又称为零空间 扮扵扬扬 T，是指所有被 T 映为零向量的空间，它是 V 的子

空间．

扫扥扲T 戽 {v | Tv 戽 0}

由于在给定了基的情况下，线性映射可以表示成矩阵．因此我们也会说等价地说矩阵

的像空间和核．若在给定基下 T 的矩阵是 A，则 T 下的像向量都是由 A 的列线性组合

而成的．且任意一种线性组合一定是一个向量的像． 在矩阵的语境下，我们更常

使用列空间 col A 和零空

间 null A 的说法．

也就是说，扉扭 T 就是 A 的列向量

张成的空间，因此我们也把像空间称为列空间 扣扯扬 A．

有了以上的基础知识，我们给出线性映射的秩的定义．

定义 3.11: 线性映射的秩

一个线性映射 T 的像空间的维数称为该线性映射的 秩，记作 扲扡扮扫 T．即

扲扡扮扫 T 戽 扤扩扭 扉扭 T

秩本身的定义就足够直观，但我们在这里再啰嗦几句．对于一个线性变换 T ∈ L戨V,W 戩，

它的值域并不一定是 W．这是因为我们只知道它把 V 里的向量映射为 W 里的向量，但

并不知道它是否“填满”了整个 W．而秩提供了这个信息——它告诉你 T 实际上把 V 映

射为整个 W 还是其中的一个平面（秩为 戲）、一条直线（秩为 戱）甚至是一个原点（秩为

戰）．而对于线性变换 T ∈ L戨V 戩，秩的意义更加直观．它告诉你 T 是否把 V 给“压缩”

了，并且压缩的程度有多大．

我们刚刚提到，像空间就是矩阵的列向量张成的空间（列空间）．而我们之前讨论线

性相关与张成空间时又说过，一个向量组中只有线性无关的向量对张成的空间的维数有贡

献．也就是说，像空间的维数就是矩阵的列向量组中线性无关的向量的数目．因此，线性

映射的秩又称为它的矩阵的列秩．
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矩阵的列向量张成其列空间，那么我们自然也可以规定其行向量张成的空间，也就是

A> 的像空间，称为 A的行空间，记作 扲扯扷 A．一个矩阵的行空间的维数称为其行秩．也

就是说，矩阵的行秩是其行向量组中线性无关的向量的数目．

接下来，我们给出在线性代数中非常不直观、但却非常令人惊奇的一个结论．

定理 3.6: 矩阵的秩

一个矩阵的列秩一定等于其行秩．我们将它们称为矩阵的 秩，记作 扲扡扮扫 A．

由于我们还是没有讲过矩阵的转置对应的线性映射，因此我们无法直接地从几何角度

解释这个现象（事实上即使我们知道了转置的意义，这个结论也并不直观）．因此在此我

们给出一个相对代数的证明，同时又尽量保持最大程度的直观性．

证明. 证明的基本思路是找到一种对矩阵进行变换的方式，这种变化不改变行秩和列秩，

但可以把矩阵简化到一个非常简单的形式，以至于一眼就能看出行秩和列秩相等．这种变

换方式称为初等行变换和初等列变换．初等行（列）变换中的一种是将一行（列）的某个

倍数加到零一行（列）上．例如，我们把矩阵的第二行加上第四行的两倍，这就是一种初

等行变换．

下面我们来证明初等行变换和初等列变换都不改变行秩和列秩．不失一般性地，我们

可以只证明初等行变换不改变行秩和列秩．

我们首先来看初等行变换是否改变行秩．如果你对向量组的线性相关性和张成空间有

着足够好的直观理解的话，会发现初等行变换不改变行秩是显然的．初等行变换就是把矩

阵的行向量组之间加加减减．对于一个矩阵的行向量组，无论我们把谁加到谁上去，都不

可能创造出一个不属于它们张成的空间的向量，也不可能压缩掉一个维度．例如下图，我

们把 u 加到了 w 上，但是三个向量仍然张成三维空间，并没有多出或减少一维．因此行

向量张成的空间是不变的．这个空间的维数，也就是行秩，自然也是不变的． 思考：这两段的结论如何严

格用数学语言证明？

u

v
w

−−−→

u

v
w + u

接下来我们再看初等行变换是否改变列秩．这一点没有上一段那么直观．对于每一个

列向量来说，初等行变换就是把它的某个元素的某个倍数加到另一个元素上．例如对于一

个 戲 行的矩阵，如果我们把第一行的 戱戯戲 加到第二行上，这相当于对每个列向量做如下变

换．

T 戺

[
x

y

]
7→

[
x

y 戫 1
2
x

]
而这个变换实际上是将整个空间做了一个“斜切”，如下图所示．下图同时也显示了两个

线性无关的向量在变化后的像，可以发现它们仍然是线性无关的．

T−−−−→
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以上显示，初等行变换其实就是把列向量张成的空间进行了“斜切”．在这个过程中，

列向量组中线性无关的向量仍然保持线性无关，因此张成的空间维数不会变．因此矩阵的

列秩再初等行变换下不变．

至此我们说明了，矩阵的初等行变换不会改变矩阵的行秩和列秩．同理，初等列变换

也不会改变矩阵的行秩和列秩．我们希望使用这种变换把矩阵“简化”．
如果 a11 = 0，则我们可以

把第一项不为零的行交换到

第一行，这也是另一种初等

行变换．如果第一列全部为

零，则第一列不用简化．用

下面类似的方法可以证明，

交换两行也不改变行秩和列

秩．

对于一个给定的矩阵 A，我们可以把第一行的 −a21/a11 倍加到第二行去，通过这种

操作我们可以消去 A 的第 戲, 戱 处的元素．我们可以用同样的方法用 a11 消除掉第一列的

其余所有值，使得第一列只保留第一个元素．再同理，我们可以再用此时的 a22 消掉第二

列在其一下的所有元素，使得第二列只保留前两个元素．以此类推，我们可以把每一列在

下方的数都尽量多消掉．最终我们会得到一个阶梯形矩阵（以下星号和省略号表示有数）．

注意两点，一是阶梯可能比一个数“宽” 但一定不可能比一个数“高”；二是这个矩阵中

有数的部分不一定延伸到矩阵的最右下，这是因为可能最右下的数恰好被完全消成 戰． 例如阶梯形矩阵可以是
1 2 3 4

5 6

0


A→ · · · →



∗ · · · · · · · · · · · · · · ·
∗ · · · · · · · · ·

戮 戮 戮 · · · · · ·
∗ · · ·


这时其实我们已经可以看出来，矩阵的行秩和列秩都是上面矩阵的“阶梯数”．不过

为了看起来更明显，我们可以把这个矩阵再做初等列变换，用相似的方式把每行右侧的元

素尽量消去．最后，我们会得到一个每行至多有一个元素的矩阵．

A→ · · · →



∗ · · · · · · · · · · · · · · ·
∗ · · · · · · · · ·

戮 戮 戮 · · · · · ·
∗ · · ·


→ · · · →



∗
∗

戮 戮 戮

∗


这时候就非常明显了——这个简化的矩阵的行秩和列秩都是剩余的矩阵元的数目．而

由于我们把矩阵 A 简化的过程并不改变其行秩和列秩，因此我们可以说 A 的行秩和列秩

都等于这个简化的矩阵的非零元素数．

这时我们已经证明了矩阵的行秩等于列秩，但是我们多说几句．考虑一个矩阵

Eij戨k戩 戽



戱
戮 戮 戮

戱 k
戮 戮 戮

戱
戮 戮 戮

戱


这个矩阵就是单位矩阵在 i, j 位置处放了一个 k．很容易验证这个矩阵可逆．且可以验证，

用这个矩阵左乘一个矩阵 A（即 Eij戨k戩A）就是把 A 的第 j 行的 k 倍加到第 i 行上；而

用这个矩阵右乘一个矩阵 A（即 AEij戨k戩）就是把 A 的第 i 列的 k 倍加到第 j 列上．也

就是说这个矩阵的乘法可以代表矩阵的初等变换．我们把这个矩阵称为初等矩阵．
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所以我们可以说，把 A 通过初等行变换简化成阶梯型矩阵时，就是在 A 的左侧乘上

了一些 Eij戨k戩．同理，我们再把阶梯形矩阵简化为对角矩阵时，就是在其右侧乘上了一些

Eij戨k戩．让我们再引入另外两种初等变换的矩阵．首先考虑 Ei戨k戩，它是把单位矩阵的第

i 个对角元变为 k．可以验证，它表示另一种初等行变换或初等列变换．它左乘一个矩阵

时，就是把这个矩阵的第 i 行扩大 k 倍；而它右乘一个矩阵时，就是把这个矩阵的第 i 列

扩大 k 倍．另一种初等变换的矩阵是 Eij，它是把单位矩阵的第 i 行和第 j 行调换．同样

可以验证，它左乘一个矩阵时，将这个矩阵的第 i 行和第 j 行调换；它右乘一个矩阵时，

将这个矩阵的第 i 列和第 j 列调换

Ei戨k戩 戽



戱
戮 戮 戮

戱

k

戱
戮 戮 戮

戱


, Eij 戽



戱
戮 戮 戮

戰 戱
戮 戮 戮

戱 戰
戮 戮 戮

戱


让我们用一些 Eij 右乘我们得到的对角矩阵，把所有剩余元素交换到主对角线上，再

用Ei戨k戩 把所有剩余的对角元都化为 戱，可以得到进一步简化的矩阵—— 它只有对角元素

上有一些 戱，其他全部为 戰，且 戱 的数目为矩阵的秩．我们用矩阵乘法把上面的三步简化

写出来，就是

Eir戨κr戩 · · ·Ei1戨κ1戩Eipjp戨kp戩 · · ·Ei1j1戨k1戩︸ ︷︷ ︸
P−1

AEi′1j
′
1
戨k′1戩 · · ·Ei′qj

′
q
戨k′q戩Ei′′1 j

′′
1
· · ·Ei′′s j

′′
s︸ ︷︷ ︸

Q

戽



戱

戱
戮 戮 戮

戱


我们把所有初等行变换的矩阵合在一起记作 P−1，把所有初等列变换的矩阵合在一起

记作 Q，这样我们发现最终这个最简形式的矩阵就是 P−1AQ，也就是它与原矩阵 A 相

抵．我们称之为 相抵标准型．所以我们可以说，矩阵的秩等于其相抵标准型中 戱 的数目．

3.4.2 秩的性质

下面给出秩的一些重要性质．我们在此用矩阵描述这些性质，但照搬到线性映射的秩

上也成立．

定理 3.7: 秩的性质

设 A ∈ Fm×n，B 是一个可以做相应运算的矩阵．有
戱戮 戰 ≤ 扲扡扮扫 A ≤ 扭扩扮{m,n}；
戲戮 扲扡扮扫 A 戽 扲扡扮扫 A>；

戳戮 若 A 与 B 相抵（相似），则 扲扡扮扫 A 戽 扲扡扮扫 B；

戴戮 扲扡扮扫戨AB戩 ≤ 扭扩扮{扲扡扮扫 A, 扲扡扮扫 B}；
戵戮 扲扡扮扫戨A戫B戩 ≤ 扲扡扮扫 A戫 扲扡扮扫 B．
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第一条性质根据矩阵的秩的定义即可看出；第二条性质由矩阵行秩与列秩的等价性即

可看出；第三条性质我们在上面的证明中已经给出．后两条性质需要进一步解释．我们先

来解释一下第四条．我们在 戳戮戱戮戲 中讨论线性映射是否为单射时提到过，线性映射无法把

一个维数小的空间映射成一个维数大的空间．而 A 和 B 分别把空间压缩到了 扲扡扮扫 A 和

扲扡扮扫 B 维，因此它们的复合变换的像空间的维数不可能超过它们．如下图所示，其中矩

形的高度表示空间的维度．

U V W

扉扭 A
扉扭 B

扉扭 AB

A B

而第五条则意味着压缩的维数可以“互补”，即若A把某个维度丢失了，而B保留了

这个维度，则加起来以后这个维数仍然会被保留． A 和 B 各自保留了扲扡扮扫 A 和 扲扡扮扫 B

维，但它们之间可能会重叠，因此和映射的像空间维数不超过它们之和．

U V
A

B

扉扭 A

扉扭 B

扉扭 A戫B

我们花费了大量篇幅定义和解释线性变换和矩阵的秩，并且说明了线性映射的秩、矩

阵的行秩和列秩实际上时同一个东西．那么秩到底和线性变换或矩阵的什么性质有关呢？

我们来看两个用秩描述的性质．

考虑一个线性变换 T ∈ L戨V 戩，它在一组基下的矩阵为 A．如果 扲扡扮扫 T 戽 扤扩扭V，或

者说 扲扡扮扫 A 等于其行数（也就是列数），则我们称 T 和 A 是 满秩 的．既然满秩，那

么意味着 A 的列向量也构成 V 的一组基，那么我们就可以把原来的基写成这组基下的坐

标，并且横向排列成一个矩阵．则这个矩阵把 A 的列向量映射回原来的基，那它自然就

是 A 的逆．于是我们发现 A 是可逆的．同样的逻辑，我们会发现，如果不满秩，则像空

间的维数小于 V 的维数，自然不可能逆回到整个 V．那我们所以我们得到了秩对线性映

射戯矩阵可逆的描述：线性映射戯矩阵满秩等价于可逆．

我们后面会得到可逆的其他等价条件，不过我们在此再讨论一个有关的性质．考虑等

式 AB 戽 AC 或 BA 戽 CA，如果 A 可逆，则我们可以在等式两边同时左乘或右乘

A−1，得到 B 戽 C．但如果 A 就不是方阵呢？我们有如下结论，这个结论在学习了下一

章后会更容易解释．

定理 3.8: 矩阵乘法的消去律

设 A ∈ Fm×n，B 和 C 是可以做相应运算的矩阵．则有

若 A 列满秩，则左消去律成立，即 AB 戽 AC 戽⇒ B 戽 C；

若 A 行满秩，则右消去律成立，即 BA 戽 CA 戽⇒ B 戽 C．
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3.5 矩阵的分块*

本节来讨论矩阵的一种很奇特的运算方式——分块．我们把一个矩阵沿着横向和纵向

切成若干块，每块矩阵称为一个子块，这种操作称为矩阵的分块．

A 戽



a11 · · · · · · · · · a1m

戮戮戮
戮戮戮

戮戮戮
戮 戮 戮

戮戮戮
戮戮戮

戮戮戮

an1 · · · · · · · · · anm


戽


A11 · · · A1s

戮戮戮
戮 戮 戮

戮戮戮

Ar1 · · · Ars



显然，如果我们把两个形状相同的矩阵以同样的方式分块，则这两个矩阵的和就是

把相同位置的子块求和．同样，分块矩阵的数乘就是把每个子块进行数乘．这两条性质

都与未分块的矩阵相同，且非常直观．但分块矩阵的乘法规则就不那么直观了．设 A ∈
Fm×n,B ∈ Fn×l，且对两个矩阵分块使得 Ai1, · · ·Ait 的列数分别等于 B1j , · · · ,Btj 的行

数，则乘积矩阵 AB 写成分块矩阵有

戨AB戩ij 戽
t∑

k=1

AikBkj

也就是说，分块矩阵的乘法规则也与未分块矩阵相同，只要分块的方式使得子块之间

的乘法是合法的．这一点乍一看非常神奇又非常难以理解．大多教科书都只会给出纯数学

的证明，甚至不给出证明．但是我们在此希望给出一个直观的解释．

为了不让问题太复杂，我们现在只考虑分块矩阵与分块向量的乘法 Ax = y，即
A11 · · · A1s

戮戮戮
戮 戮 戮

戮戮戮

Ar1 · · · Ars



x1

戮戮戮

xs

 戽


y1

戮戮戮

yr


其中 A ∈ Fm×n．我们设 A 是线性映射 T ∈ L戨V,W 戩 在 V 的基 扛e1, · · · , en扝 和 W 的

基 扛e′1, · · · , e′m扝 下的矩阵．我们把 V 和 W 以下面的方式分解为子空间的直和：把它们的

基分别按照切割列向量相同的方式切割（也就是切割矩阵的行戯列的方式），并把切开的每

组基向量张成一个子空间，如下式．也就是说，式中的 Vj 的维数（即它分到的 V 的基的

数目）等于 xj 的行数（即 A1j 的列数），Wi 的维数等于 yi 的行数（即 Ai1 的行数）．

V 戽 扳扰扡扮{e1, · · ·︸ ︷︷ ︸, · · · , · · ·︸ ︷︷ ︸, · · · , · · · , en︸ ︷︷ ︸}
V1 ⊕ V2 ⊕ · · · ⊕ Vs

W 戽 扳扰扡扮{e′1, · · ·︸ ︷︷ ︸, · · · , · · ·︸ ︷︷ ︸, · · · , · · · , e′m︸ ︷︷ ︸}
W1 ⊕ W2 ⊕ · · · ⊕ Wr

这样分割后，列向量 x 和 y 的子块就是在这些子空间中的坐标．

x 戽



x1

戮戮戮
戮戮戮
戮戮戮

xn



x1 ∈ V1

xs ∈ Vs
戬 y 戽



y1

戮戮戮
戮戮戮
戮戮戮

ym



y1 ∈W1

yr ∈Wr
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那 A 的子块 Aij 是什么呢？它是一个线性变换 Tij 戺 Vj → Wi．这个线性变换中包含

了 x 的所有位于 xj 的分量对 y 位于 yi 的分量的贡献．回忆起我们最开始讲线性变换时

说过，y 的每个分量都是 x 的所有分量的线性组合．而如果我们只把 yi 这个子块里的分

量写成 x 的分量的线性组合，而且把组合中只保留 xj 这些分量的线性组合项，而把其他

线性组合项划去，那么得到的这个小的线性组合就是 Tij．

我们来举一个例子．考虑 R3 上的一个线性变换，并作如下方式的分块．
y1

y2

y3

 戽


a11 a12 a13

a21 a22 a23

a31 a32 a33



x1

x2

x3


那么子块 A12 戽

[
a12 a13

a22 a23

]
表示什么呢？它表示

[
x2

x3

]
对

[
y1

y2

]
的贡献．也就是说，本来

y 的各分量是以如下方式组合出的
y1 戽 a11x1 戫 a12x2 戫 a13x3

y2 戽 a21x1 戫 a22x2 戫 a23x3

y3 戽 a21x1 戫 a22x2 戫 a23x3

而 A12 表示的是上式中和 x2、x3 有关的项，也就是蓝色的部分．同样，其他子块表示的

部分也被不同颜色标记出．

现在我们回到矩阵分块的一般情况．既然 Aij 表示了 xj 中的分量对 yi 的分量的贡

献，那么给定 i以后，所有的 Aij , 戨j 戽 戱, · · · , s戩就集齐了 x的所有分量对 yi 的贡献．将

它们相加，就得到了最终的 yi．如下图所示．而最终的 y 就是这些 yi 各占据不同维度后

构成的向量． 
x1

x2

戮戮戮

xs


Ai1

Ai2

Ais



戮戮戮

yi
戮戮戮
戮戮戮


我们上面解释了分块矩阵与分块向量的乘法的意义——它代表把 V 和 W 进行直和分

解后对子空间之间的映射的线性组合．而分块矩阵的乘法实际上与此逻辑完全相同，它就

是在直和分解的空间上进行线性变换的复合．如果你理解了上面我们讲的内容，那分块矩

阵的乘法规则几乎是显然的了．我们在此就不再赘述了．

3.6 行列式

3.6.1 行列式的定义

我们考虑一个线性变换 T ∈ L戨V 戩，它将一个体积（n 维体积）为 A 的图形映射为体

积为 A′ 的另一个图形，那么 A 和 A′ 之间有什么关系呢？ 一个图形 S 可以看作所有终

点落在 S 的向量的集合，而

T (S) 就是 S 中所有向量被

T 变换后构成的图形．
T−−−−→

我们假设在 V 里画上等距网格，让网格随着图形一起变化．我们会发现，图形和网

格之间的关系是不变的，也就是图形中所包含的网格数目是不变的．而由于整个空间由体

戳戶
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积相等的小格构成，因此我们可以发现面积的比例

A′

A
戽
映射后的小格面积

映射前的小格面积

这个量与图形 S 的大小和形状完全无关，只与线性变换 T 本身有关，因此它是 T 的

一个性质．我们把 T 写成一组基下的矩阵 A，则这组基被映为 A 的列向量．如果我们定

义基张成的网格的体积是 戱，那么我们这个量实际上就是 A 的列向量张成的网格的体积．

我们把它称为 T 或 A 的行列式．当然，我们需要定义什么是体积．我们给出如下定义．

定义 3.12: 行列式

一个方阵的 行列式 扤扥扴戨·戩 是一个函数 Fn×n → F，满足 这里的每个 ai 都是指矩阵

A 的一个列向量．
戱戮 对列的线性性：

扤扥扴戨扛a1, · · · , kai 戫 `a′i, · · · ,an扝戩

戽 k 扤扥扴戨扛a1, · · · ,ai, · · · ,an扝戩 戫 `扤扥扴戨扛a1, · · · ,a′i, · · · ,an扝戩

戲戮 对列的反对称性：

扤扥扴戨扛a1, · · · ,ai, · · · ,aj , · · · ,an扝戩

戽− 扤扥扴戨扛a1, · · · ,aj , · · · ,ai, · · · ,an扝戩

戳戮 单位矩阵的行列式为一：扤扥扴 I 戽 戱．
对于具体的矩阵的行列式，

我们会把矩阵两侧的括号变

为直线，例如∣∣∣∣∣a b

c d

∣∣∣∣∣

记作 扤扥扴A 或 |A|．若 A 是线性变换 T 的矩阵，则我们也会说线性变换的行列式

扤扥扴T，定义它等于 扤扥扴A．

这里面第三条保证了恒等映射的行列式为一，即不改变图形的面积．第一条是体积最

重要的定义：多线性性，即对矩阵的任意一列都满足线性性．体积具有多线性性本身是很

容易理解的．例如下图的平行四边形网格中，对其中一个边的向量进行线性组合就是对总

面积进行线性组合．

u
v1

v2

戽

u

戳v1 戫 戲v2

但是多线性性也会带来一个问题——如果上图中的 v2 是指向下方的，那么它会使线

性组合的向量构成的平行四边形的面积减少．这说明，u 与 v2 构成的平行四边形的面积

和 u 和 v1 构成的平行四边形的面积的正负号相反．也就是说，这种多线性性的函数表示

的不是普通的面积，而是“带符号” 的面积．

u
v1

v2 戽
u

戳v1 戫 v2

这就是定义的第二条性质——反对称性的来源．一般的面积是对称的，也就是说 u 与

v 构成的平行四边形的面积和 v 与 u 构成的平行四边形的面积相等．但为了在有正负号

的情况下仍然表示面积，我们必须要求面积是反对称的．也就是 u 与 v 构成的平行四边

形的面积和 v 与 u 构成的平行四边形的面积大小相等但符号相反．

最后需要说的是，我们对行列式的定义是满足三条性质的函数，但这个函数是否唯一

呢？可以证明，它的确是唯一的．这样我们才良好地给出了行列式的定义．

戳户
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例 3.12. 多元积分换元公式 对于多元积分∫
Ω

f戨x1, · · ·xn戩扤x1 · · · 扤xn

我们可以把 扤x1 · · · 扤xn 理解成一个由局部的 n 个“微小向量”
扤x1

戰
...

戰

 ,


戰

扤x2

...

戰

 , · · · ,


戰

戰
...

扤xn


张成的“体积微元”，而如果我们把函数 f 理解为描述各位置的质量密度的话，积分求

得的就是总质量．

现在如果我们如果想把 戨x1, · · · , xn戩 换元为 戨u1, · · · , un戩，那么积分该如何表示
呢？我们之前提到过，多元函数在局部可以被线性化为雅可比矩阵

Jxu 戽


∂u1

∂x1
· · · ∂u1

∂xn
...

. . .
...

∂un
∂x1

· · · ∂un
∂xn


而行列式表示的是线性变换把体积放大的倍数．也就是说，体积微元 扤u1 · · · 扤un

是 扤x1 · · · 扤xn 的 |扤扥扴Jxu| 倍．那么如果我要用 扤u1 · · · 扤un 表示出原来的体积微元，
则应该乘上 戱/|扤扥扴Jxu| 戽 |扤扥扴Jux|．注意，在多元积分中体积微元是真正的体积，并
不带有正负号．因此我们对行列式的值取了绝对值．于是我们得到了最终的换元公式 注意积分区域 Ω 和被积函

数 f 需要变成用

u1, · · · , un 表示的．
∫

Ω

f · 扤x1 · · · 扤xn 戽

∫
Ω

f · | 扤扥扴Jux|扤u1 · · · 扤un

3.6.2 行列式的计算

我们上面给出了行列式的定义，但这个定义并不能让我们算出任意一个方阵的行列

式．下面我们给出一个公式，它可以让我们计算出任意一个方阵的行列式．它实际上是

行列式的一个等价定义，国内大多数课本都是以这种方式定义行列式的．

定理 3.9

对于一个方阵 A，其行列式为

扤扥扴A 戽
∑

(i1,··· ,in)∈Sn

扳执扮戨i1, · · · , in戩 a1,i1 · · · an,in

其中 Sn 表示所有 n 元排列，而 扳执扮戨·戩 表示排列的符号．

这个公式比较复杂，我们来举一个例子做解释．考虑一个 戴× 戴 的行列式∣∣∣∣∣∣∣∣∣∣
a b c d

e f g h

i j k l

m n o p

∣∣∣∣∣∣∣∣∣∣
戳戸
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我们在其中选择 戴 个数，使得它们两两既不同行也不同列，例如上面的四个红色的数．我

们从上到下数它们分别是每行的第几个数（也可以从左到右数是每列的第几个数），得到

一个排列 戨戲戬戴戬戳戬戱戩．这个排列的符号是指它里面大数在前、小数在后的数对有多少对，若

是奇数对则为 −戱，若是偶数对则为 戱．例如在这个排列中，戨戲戬戱戩戬戨戴戬戱戩戬戨戴戬戳戩戬戨戳戬戱戩 是大数

在前、小数在后的数对，共四对，所以整个排列的符号是 戱，也就是说这一项是正的．所

以我们得到一项 戫bhkm．我们把这样不同行、不同列的四个数的所有取法都取一遍，计

算出带符号的乘积，将它们相加，就得到了这个行列式的值．

例 3.13. 上三角矩阵的行列式 一个只有主对角线及其以上元素非零的矩阵称为上三角

矩阵．也就是形如

U 戽


a11 ∗

a22

. . .

ann


的矩阵．上三角矩阵的行列式即为其主对角线元素的乘积，即

扤扥扴U 戽 a11a22 · · · ann

这是因为根据定理 戳.戹，我们要在每一列中选一个元素，将它们相乘，并将所有组合的

乘积按照符号相加．而只有选择的元素全部都是非零元素的组合的乘积才非零，才对

行列式的值有贡献．我们要在第一列选择一个非零元素，那么只能选择 a11．接下来我

们要在第二列选择非零元素，且已选择的 a11 要求我们不能选第一行的元素，那么就

只能选择 a22．以此类推，我们每列中只能选择主对角线上的那个元素．最终只会得到

一项 a11a22 · · · ann，且它的排列 戨戱, 戲, · · · , n戩 是一个偶排列，所以符号为正．从而我们
就得到了上三角矩阵的行列式．

上面的公式虽然给了我们计算任意一个方阵的方法，但它的复杂度实在太高，无论是

手算还是计算机算都难以计算大型矩阵的行列式．我们下面给出行列式的另外一组性质，

使得我们可以把复杂的行列式化为更简单的行列式．

定理 3.10: 初等行（列）变换下的行列式

行列式在矩阵的初等行（列）变换下满足

戱戮 将一行（列）变为 k倍，则行列式变为原来的 k倍（来自行列式的定义）：

扤扥扴戨扛a1, · · · , kai, · · · ,an扝戩 戽 k 扤扥扴戨扛a1, · · · ,ai, · · · ,an扝戩

戲戮 交换两行（列），行列式变号（也来自行列式的定义）：

扤扥扴戨扛a1, · · · ,ai, · · · ,aj , · · · ,an扝戩

戽− 扤扥扴戨扛a1, · · · ,aj , · · · ,ai, · · · ,an扝戩

戳戮 将一行（列）的 k 倍加到零一行（列）上，行列式不变：

扤扥扴戨扛a1, · · · ,ai, · · · ,aj , · · · ,an扝戩

戽 扤扥扴戨扛a1, · · · ,ai, · · · , kai 戫 aj , · · · ,an扝戩

戳戹
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这三条性质中，前两条直接来自我们给出的行列式定义，因此不再解释．我们只来解

释一下第三条．考虑行列式 扤扥扴戨扛u,v扝戩，仍然以列向量张成的体积的角度看行列式，那么

把向量 u 的 k 倍加到了另一个向量 v 上，相当于把张成的网格沿着 u 的方向进行了一个

“斜切”．而若把 u方向看作网格的“底边”，这种斜切不改变网格的高（显然也不改变底

边的长度），因此不改变其体积．

u

v

戽

u

v 戫 戰.戵u

这三条性质可以让我们把一个行列式转化为上三角行列式，再求出行列式的值．

例 3.14. 对于二阶行列式 ∣∣∣∣∣a b

c d

∣∣∣∣∣
我们可以将第一行的 −c/a 倍加到第二行上，得到∣∣∣∣∣a b

戰 d− bc
a

∣∣∣∣∣
从而求出其行列式为

a戨d− bc

a
戩 戽 ad− bc

最后，我们给出一种方式，可以对高阶行列式进行降阶，从而更方便地求出行列式的

值．

我们先来介绍一个背景概念——代数余子式．对于一个行列式 A，它在第 i, j 处的代

数余子式 cij戨A戩 是指把该位置所在的行和列都划掉，剩余的行列式再用 戨−戱戩i+j 加上正负
号．也就是

cij戨A戩 戽 戨−戱戩i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 · · · a1,j−1 a1,j+1 · · · a1,n

戮戮戮
戮 戮 戮

戮戮戮
戮戮戮

戮 戮 戮
戮戮戮

ai−1,1 · · · ai−1,j−1 ai−1,j+1 · · · ai−1,n

ai+1,1 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,n

戮戮戮
戮 戮 戮

戮戮戮
戮戮戮

戮 戮 戮
戮戮戮

an,1 · · · an,j−1 an,j+1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
利用代数余子式，我们可以把行列式进行降阶．这实际上也可以作为行列式的一种递

归定义．

定理 3.11: 代数余子式展开

行列式的值等于其任意一行（列）的各个元素与其代数余子式的乘积之和．即

扤扥扴A 戽
n∑
i=1

aijcij戨A戩

当行列式的某行或者某列大部分都是零的时候，我们可以把行列式展开为几个小一些
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的行列式，方便计算．我们也可以利用矩阵的初等行（列）变换将某一行（列）的大部分

元素消掉，再进行余子式展开．

例 3.15. 扖扡扮扤扥扲扭扯扮扤扥 行列式是一个在数学、物理和数值计算方面都有重要应用的行

列式．它的定义为

Dn 戽

∣∣∣∣∣∣∣∣∣∣∣∣∣

戱 戱 · · · 戱

x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

. . .
...

xn−1
1 xn−1

2 · · · xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
我们可以使用初等行变换消去第一列．我们从最后一行开始，每一行都减去前一

行的 x1 倍，将行列式化为∣∣∣∣∣∣∣∣∣∣∣∣∣

戱 戱 戱 · · · 戱

戰 x2 − x1 x3 − x1 · · · xn − x1

戰 x2戨x2 − x1戩 x3戨x3 − x1戩 · · · xn戨xn − x1戩
...

...
. . .

...

戰 xn−2
2 戨x2 − x1戩 xn−2

3 戨x3 − x1戩 · · · xn−2
n 戨xn − x1戩

∣∣∣∣∣∣∣∣∣∣∣∣∣
接下来我们对第一列进行代数余子式展开，由于从第二个元素开始都为零，在展

开中没有贡献．因此代数余子式展开就是第一个元素的代数余子式．然后我们把每列

的公因子提出来，得到

Dn 戽 戨x2 − x1戩戨x3 − x1戩 · · · 戨xn − x1戩

∣∣∣∣∣∣∣∣∣∣∣

戱 · · · 戱

x2 · · · xn
...

. . .
...

xn−2
2 · · · xn−2

n

∣∣∣∣∣∣∣∣∣∣∣
可以以此方式把 扖扡扮扤扥扲扭扯扮扤扥 行列式降阶 n− 戱 次，每次都会提出所有 戨xj − xi戩

的乘积（i 固定，j > i），所以最终我们可以得到 扖扡扮扤扥扲扭扯扮扤扥 行列式的值

Dn 戽
∏

1≤i<j≤n

戨xj − xi戩

3.6.3 行列式的代数性质

上一节我们讲解的性质主要是用于行列式的计算的．而这一节讲解的性质更合矩阵作

为线性映射的性质相关．

首先我们来看，矩阵的运算对应着行列式的什么运算．

定理 3.12

设 A,B ∈ Fn×n，则有
戱戮 扤扥扴戨AB戩 戽 扤扥扴A 扤扥扴B；

戲戮 扤扥扴戨kA戩 戽 kn 扤扥扴A；

戳戮 扤扥扴A> 戽 扤扥扴A．

戴戱
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这三条性质都很显然．对于第一条，两个线性变换 A 和 B 分别将体积扩大了 扤扥扴A

和 扤扥扴B 倍，自然其复合变换就是将体积扩大 扤扥扴A 扤扥扴B 倍．对于第二条，一个 n 维网

格如果每条边都扩大了 k 倍，体积自然就会扩大 kn 倍．而第三条可以由定理 戳戮戹 中行与

列的对称性直接看出．

最后我们讨论一下行列式与秩和可逆性的关系．如果一个方阵满秩，也就是其列向量

张成整个空间，那么这些列向量自然就张成一个体积非零的网格．而如果方阵不满秩，那

么说明所有的列向量包含在一个维度更小的子空间中，那么它们自然张成一个体积为零的

“薄片”．例如三个共面向量“张成的平行六面体” 的体积为零．这两点说明矩阵满秩等

价于行列式非零．而我们在 戳戮戴戮戲 节中又说过，满秩等价于可逆．于是我们就有了下面的

结论．

定理 3.13: 可逆的等价条件

设 A ∈ Fn×n，则下列命题等价
戱戮 A 可逆；

戲戮 A 满秩；

戳戮 扤扥扴A 6戽 戰．

由可逆性结合定理 戳戮戱戲，我们可以得到 扤扥扴戨A−1戩 戽 1
detA
．

至此，我们已经讨论了矩阵的数乘、矩阵乘法、转置和逆所对应的行列式的性质．而

对于剩余的一条矩阵运算——矩阵的加法，并不存在这样一条性质．
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4 线性方程组理论

4.1 线性方程组的解的结构

4.1.1 线性方程组

前面的章节我们讨论了线性空间及其上的线性映射的性质．这章并没有什么实质性的

新内容，只是用我们所学的内容讨论一下线性代数最初所研究的问题—— 线性方程组．

对于一个线性方程组，也就是一个 n 元一次方程组

a11x1 戫 a12x2 戫 · · ·戫 a1nxn 戽 b1

a21x1 戫 a22x2 戫 · · ·戫 a2nxn 戽 b2
戮戮戮

am1x1 戫 am2x2 戫 · · ·戫 amnxn 戽 bm

我们可以把它写成矩阵形式．我们记

A 戽


a11 · · · a1n

戮戮戮
戮 戮 戮

戮戮戮

am1 · · · amn

 , x 戽


x1

戮戮戮

xn

 , b 戽


b1
戮戮戮

bm


则我们可以把上面的方程组记为

Ax 戽 b

要解这个方程，首先会想到把 A 逆过去，得到

x 戽 A−1b

但这只有在 A 是一个可逆方阵时成立．我们知道，方阵可逆等价于行满秩，也就是所有

行之间线性无关．回到我们最初的方程组的记法，我们会发现这意味着方程数与未知数数

相等，且所有的方程都是独立的，也就是没有任何一个方程可以用其他方程表示出来．我

们初中就学过，这样的方程组一定可以通过消元求出唯一解．但如果方程数与未知数数不

相等呢？如果并不是所有的方程都是独立的呢？我们下面就来回答这个问题．

4.1.2 齐次线性方程组

对于方程组 Ax 戽 b，如果 b 戽 0，则称为齐次线性方程组，否则称为非齐次线性方

程组．我们先来研究齐次线性方程组．

由于线性映射的线性性，对于一个齐次线性方程组，如果我们能找到两个解，则它们

的线性组合也一定是方程组的解．因此方程组所有的解构成 Rn 的一个子空间，称为 解空
间． 为了不总是写数域 F，我们

在此默认是一个实方程组，

但实际上如果是复方程组也

完全相同．

这意味着我们只要找到解空间的一组基（称为 基础解系），则我们就可以用它们的线

性组合表示出所有解．但问题是，我们应该找到多少个解作为基础解系呢？或者说，解空

间的维数有多大呢？

设 扲扡扮扫 A 戽 r，我们以行秩的意义来考虑这个秩．行秩为 r 意味着 A 的行向量中只

有 r 个是独立的，其他行都可以表示为这 r 行的线性组合．放到方程组里看，也就是说在

m 个方程中只有 r 个是独立的，其余都可以由这 r 个方程线性表出．它们不再对 x 提供

任何新的信息，可以删掉而不影响方程的解． 例如在三维空间中，一个线

性方程表示一个平面，两个

线性方程表示两个平面的交，

也就是一条直线，而三个线

性方程则表示一个点．

这 r 个方程每个都把本来是 n 维的解空间
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降低一维，所以最终的解空间是 n − r 维，也就是我们只要找到 n − r 个线性无关的解，
就可以用它们的线性组合表示出所有的解．

定理 4.1: 齐次线性方程组的通解

对于 n 元线性方程组 Ax 戽 0，其中 扲扡扮扫 A 戽 r．该方程组有 n− r 个线性无关的
解，若记作 ξ1, · · · , ξn−r，则该方程的通解为

x 戽
n−r∑
i=1

ciξi, c1, · · · , cn−r ∈ R

当 r 戽 n 时，解空间的维数 n− r 戽 戰，也就是说方程的解只有 x 戽 0．当 r < n 时，

方程有非零解，且所有解构成一个 n− r 维的线性空间．

4.1.3 非齐次线性方程组

对于方程组 Ax 戽 b，如果 b 6戽 0，则称为非齐次线性方程组．我们把 A 称为该方程

组的系数矩阵，而把 A 和 b 横向排在一起的矩阵 扛A b扝 称为增广矩阵．

非齐次线性方程组的解不再构成线性空间，这是因为两个解的线性组合不一定还是方

程组的解．但我们可以很容易地把它和它所对应的齐次线性方程组 Ax = 0 的解联系起

来．我们可以发现

� 若我们找到了该方程的一个解 η，则它与所对应的齐次线性方程组的任意一个解

ξ 的和 ξ 戫 η 也一定是该非齐次线性方程组的解；

� 该方程的任意两个解 η1 和 η2 的差一定是所对应的齐次线性方程组的一个解．

这说明非齐次线性方程组的解集一定可以表示为对应的齐次线性方程组的解空间加上

它自身的任意一个解，这其实相当于把齐次线性方程组的解空间平移了一下，形成了一个

偏离了原点的平直空间． 这称为 Rn 的一个仿射子
集．

定理 4.2: 非齐次线性方程组的通解

对于 n 元线性方程组 Ax 戽 b，其中 扲扡扮扫 A 戽 r，假设 η 是它的一个解．而它所

对应的齐次线性方程组 Ax 戽 0 的 n − r 个线性无关的解为 ξ1, · · · , ξn−r，则方程
Ax 戽 b 的通解为

x 戽 η 戫
n−r∑
i=1

ciξi, c1, · · · , cn−r ∈ R

注意在上面的定理中，我们假设我们找到了非齐次线性方程组的一个解．但这个方程

组一定有解么？答案是否定的．与齐次线性方程组不同，非齐次线性方程组不一定有解．

考虑 扲扡扮扫 A 戽 r < n，在齐次线性方程组的情况下，这意味着有方程是“多余的”．但在

非齐次线性方程组下，这却可能意味着有些方程是矛盾的．这是因为常数项 b 的存在．例

如考虑下面的系数矩阵

A 戽


戳 戱 戵

戱 −戱 戲

戱 戳 戱


这个矩阵的秩为 戲，我们可以发现第三行等于第一行减去第二行的二倍．如果它在齐次线
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性方程组 
戳x1 戫 x2 戫 戵x3 戽 戰 戱O

x1 − x2 戫 戲x3 戽 戰 戲O

x1 戫 戳x2 戫 x3 戽 戰 戳O

中，这意味着方程 戳O 可以由 戱O− 戲× 戲O 得到，也就是“多余的”．但它如果在非齐次线

性方程组 
戳x1 戫 x2 戫 戵x3 戽 戳 戱O

x1 − x2 戫 戲x3 戽 戲 戲O

x1 戫 戳x2 戫 x3 戽 戴 戳O

中，我们会发现由 戱O − 戲 × 戲O 得到的方程与 戳O 的常数项不匹配，也就是说它们是矛盾

的，方程组自然就无解．这说明，在非齐次线性方程组中，系数矩阵行不满秩不一定会使

得解变多，还有可能导致无解．那么什么情况下非齐次线性方程组有解呢？

有解的情况自然就是系数矩阵和常数项不矛盾的情况．也就是说，如果系数矩阵的行

之间满足一定的线性组合关系，那么相对应的常数项之间也一定满足同样的关系．再换一

种说法，就是如果我们把常数项放到系数矩阵的右边成为增广矩阵，那么增广矩阵的行之

间的线性组合关系应该与系数矩阵相同．而行之间的线性组合关系决定了矩阵的行秩，也

就是秩．这也就意味着，增广矩阵的秩应与系数矩阵相同．

综合前面我们对于线性方程组的解的结构的讨论，我们可以得到如下结论．

定理 4.3: 线性方程组的解的存在性及唯一性

n 元方程组 Ax 戽 b

� 无解的充要条件是 扲扡扮扫 A < 扲扡扮扫 扛A b扝；

� 有唯一解的充要条件是 扲扡扮扫 A 戽 扲扡扮扫 扛A b扝 戽 n；

� 有无穷多解的充要条件是 扲扡扮扫 A 戽 扲扡扮扫 扛A b扝 < n．

我们之前都是默认在解代数方程，即关于数的方程．但其实线性的函数方程也有同样

的解的结构．

例 4.1. 线性微分方程 考虑 n 阶线性齐次常微分方程

an戨x戩y
(n) 戫 an−1y

(n−1) 戫 · · ·戫 a1戨x戩y
′ 戫 a0y 戽 戰

容易验证其解构成一个线性空间．实际上可以证明这是一个 n 维线性空间，我们可以

找到 n 个线性无关的解构成其基础解系．而方程的通解就是这 n 个线性无关的解的所

有线性组合．

而对于线性非齐次常微分方程

an戨x戩y
(n) 戫 an−1y

(n−1) 戫 · · ·戫 a1戨x戩y
′ 戫 a0y 戽 ϕ戨x戩

若我们能找到它的一个解 y∗，则方程的通解就是所对应的线性齐次微分方程的通解加

上 y∗．

在线性代数方程组中，每个解 x 戽 扛x1, · · · , xn扝> 就是一个方程中从左到右的所有
x 排列起来，而 n 个解线性无关的充要条件就是把这些列向量横向排列成矩阵的行列
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式不为零．对微分方程组类似．我们可以把每个解 y表示成一个向量 扛y, y′, · · · , y(n−1)扝>．

而 n 个解 {y1, · · · , yn} 线性无关的充要条件是

W 戽

∣∣∣∣∣∣∣∣∣∣∣

y1 y1 · · · yn

y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣
6戽 戰

这个行列式称为这 n 个解的 扗扲扯戓扮扳扫扩 行列式．

4.2 高斯消元法

我们在上一节中讨论了线性空间的解的结构．当我们知道了齐次线性方程组的基础解

系（或者还有非齐次线性方程组的一个解）后，我们就可以用它们表示出所有的解．但这

些知识并没有告诉我们，我们该如何得到线性方程组的基础解系．本节我们就来回答这个

问题．我们将要介绍的高斯消元法本质上就是小学所学的加减消元法，它只是提供了一种

标准化的消元方法，方便计算机进行计算．

考虑方程 Ax 戽 b，我们把各个方程之间通过线性组合加减的方式消元，其实就是在

对其增广矩阵做初等行变换．我们在证明矩阵的行秩等于列秩时引入了三种初等行变换

戱戮 交换两行；

戲戮 将一行乘上 k 倍；

戳戮 将一行的 k 倍加到另一行上．

显然，对增广矩阵做这三种初等行变换不会改变方程组的解．我们也说过，矩阵一定可以

初等行变换变为一个阶梯型矩阵

A→ · · · →



∗ · · · · · · · · · · · · · · ·
∗ · · · · · · · · ·

戮 戮 戮 · · · · · ·
∗ · · ·


在这个矩阵中所代表的方程中，由于下方所含有的未知数一定比上方小，因而我们可

以轻松地从下向上求解，遇到无法确定未知数就赋予它一个自由度，最终求得带有自由度

的整个解，就是方程的通解．这就是高斯消元法．当然，高斯消元法也可以直接在方程

组中进行消元，而不写成增广矩阵的形式．只是写成增广矩阵使得我们不用写出各个未知

数，只关注其系数，写起来更方便一些．

例 4.2. 考虑线性方程组 

戲x1 − x2 戫 x4 戫 x5 戽 戵

戲x1 − 戲x3 − 戲x4 戫 x5 戽 户

x1 − x3 戫−戲x4 戫 x5 戽 戴

x2 − 戲x3 戫 x4 戫 x5 戽 戶

戴x1 − 戴x3 − 戳x5 戽 戶
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其增广矩阵为 

戲 −戲 戰 戱 戱 戵

戲 戰 −戲 −戲 戱 户

戱 戰 −戱 −戲 戱 戴

戰 戱 −戲 戱 戱 戶

戴 戰 −戴 戰 −戳 戶


此处我们为了方便区分，在系数和常数之间画了一条竖线．我们可以通过初等行变换

把这个增广矩阵变为 

戲 −戱 戰 戱 戱 戵

戱 −戲 −戳 戰 戲

−戲 戱 戱

戱 戲

戰


很显然，这个增广矩阵的秩为 戴，而整个方程是一个 戵 元线性方程，说明解集有一个

自由度．现在让我们来求解．

首先我们来看最后一行，它代表方程 戰 戽 戰，这个方程不给我们提供任何信息．我

们继续向上看．下一个方程是 x5 戽 戲，这使得我们可以求出 x5．我们再向上看，下一

个方程是 −戲x4 戫 x5 戽 戱，我们根据之前的 x5 戽 戲 可以求解出 x4 戽 戰.戵．再下一个

方程是 x2 − 戲x3 − 戳x4 戽 戲，我们把之前求解的 x4 带入得到 x2 − 戲x3 戽 戳.戵．我们

赋予 x3 一个自由度 x3 戽 t，则可以得到 x2 戽 戲t 戫 戳.戵．最后我们来看最上面的方程

戲x1 − x2 戫 x4 戫 x5 戽 戵，带入之前求解出的 x2 至 x5 可得 x1 戽 t戫戳．这样我们就得到

了最终的解

x 戽



t戫 戳

戲t戫 戳.戵

t

戰.戵

戲


我们可以把这个解写成

x 戽



戳

戳.戵

戰

戰.戵

戲


戫 t



戱

戲

戱

戰

戰


从而可以看出这个解是一个特解加上一个一维的线性空间（所对应的齐次线性方程组

的解）．

利用高斯消元法，我们还可以求矩阵的逆．回顾一下，我们说矩阵是一个线性变换在

给定基下的表示，它的第 i 列表示了第 i 个基向量 ei 被映射成的像．而如果一个向量 x

被矩阵 A 映射成了 ei，那么逆矩阵 A−1 就应该把 ei 映回这个向量．也就是说，这个向

量就应该是 A−1 的第 i 列．所以，矩阵求逆实际上就化为了线性方程组 Ax 戽 ei 的求解

问题．可以证明，在 A 可逆的情况下，我们一定可以通过初等行变换把它变为单位矩阵

I，而此时右侧的基向量 ei 就变成了 Ax 戽 ei 的解，也就是 A−1 的第 i 列．我们也可以

进一步，把所有的基向量按顺序放在 A 的右侧，构成一个单位矩阵．我们通过初等行变
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换把 A 变为 I，此时右侧的单位矩阵就自动变为了 A 的逆．

定理 4.4: 高斯消元法求逆

若矩阵 A 可逆，则 扛A I扝 一定可以通过初等行变换变为 扛I B扝 的形式．此时 B 就

是 A 的逆．

4.3 Cramer 法则

在实际应用中，我们需要求解的方程大多都未知数等于方程数，且方程之间线性无

关．如果写成 Ax 戽 b的形式，则意味着 A是可逆方阵．在这种情况下，如果我们不想用

高斯消元法，而希望用代数的方式表示出 x，一种方式是直接由矩阵运算得到 x 戽 A−1b，

但这种方式中矩阵求逆的步骤非常复杂．本节我们介绍另一种方式，可以通过一个表达式

直接求出解．一般来说，这种解法不如高斯消元法快，但是它可以让我们迅速地表示出解

的其中一个分量 xi，且理论意义也高于高斯消元法．这种方法就是 扃扲扡扭扥扲 法则．我们先

给出结论，再给出解释．

定理 4.5: Cramer 法则

对于 n 元线性方程组 Ax 戽 b，若 A 是可逆方阵，则方程的解为

xi 戽
扤扥扴Ai

扤扥扴A

其中 Ai 是把 A 的第 i 列换成 b 得到的矩阵．

下面我们来直观地解释一下这个结论．我们以前一直以线性方程组的角度看 Ax 戽 b，

现在让我们用线性变换的角度看一看这个等式——有一个未知向量 x，它被线性变换 A映

为向量 b，我们希望求出这个未知向量 x．那么如何表示出 x 的分量 xi 呢？我们用基向

量 e1, · · · , ei−1,x, ei+1, · · · , en 张成一个平行六面体，它的体积为

扤扥扴戨扛e1, · · · , ei−1,x, ei+1, · · · , en扝戩 戽

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

戱 x1

戮 戮 戮
戮戮戮

xi
戮戮戮

戮 戮 戮

xn 戱

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
戽 xi

这很好理解，我们把基向量 e1, · · · , ei−1, ei+1, · · · , en 张成的 n − 戱 维的“面” 作为“底

面”，其“面积”为 戱，而在与他们都垂直的方向，也就是 ei 的方向上，向量 x 的“高”

为 xi，所以整个平行六面体的体积为 xi．现在我们把线性变换 A 作用在这些向量上，它

们变成了 Ae1, · · · ,Aei−1,Ax,Aei+1, · · · ,Aen，它们的张成的体积为

扤扥扴戨扛Ae1, · · · ,Aei−1,Ax,Aei+1, · · · ,Aen扝戩

而 Aek 就是 A 的第 k 列，Ax 就是 b．也就是说这个行列式的矩阵是 A 的第 i 列被替

换成了 b，其余保持不变．这就是我们定义的 扤扥扴Ai．即，一个体积为 xi 的平行六面体

被 A 映射为了体积为 扤扥扴Ai 的平行六面体．而 A 对体积的放大倍数为 扤扥扴A，所以有

xi 扤扥扴A 戽 扤扥扴Ai

于是我们就得到了 扃扲扡扭扥扲 法则．
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5 内积空间

5.1 内积空间

我们已经看到，线性空间是一个非常有用的代数系统，我们在它上面得到了许多非常

有用的结论．但线性空间上仍然缺少了一些很有用的内容——向量没有长度的概念、之间

也没有夹角的概念．如果有了长度和夹角，我们一定会得到更多有趣的性质．这一章我们

就来研究定义了长度和夹角的线性空间．

5.1.1 内积空间的定义

回顾一下，我们在高中时想要求一个向量的长度，或两个向量之间的夹角，很常用的

方式是通过点乘．对于两个向量 a 和 b，它们的点乘定义为

a · b 戽 |a||b| 扣扯扳 θ

而我们可以推出，若两个向量写成坐标 a 戽 戨a1, a2, a3戩 和 b 戽 戨b1, b2, b3戩，则有

a · b 戽 a1b1 戫 a2b2 戫 a3b3

之后，向量的长度 |a| 和两向量之间的夹角 θ 的求法分别是

|a| 戽
√
a · a 扣扯扳 θ 戽

a · b
|a| · |b|

在线性空间中，向量没有长度和夹角，但点乘的坐标形式很容易推广到高维空间中．

我们可以定义

a · b 戽
n∑
i=1

aibi

但这种点乘运算有一个问题：它是对于坐标的运算，而非向量的运算，而坐标依赖于

基的选取．而我们希望找到一种关于向量本身的运算，这样才能不依赖于基地定义长度和

夹角．这要求我们把点乘的性质抽提出来，定义一个抽象的运算．这就是内积．

定义 5.1: 内积与欧几里得空间

实线性空间上的 内积 是一个二元实值函数 〈·, ·〉，满足 对于复线性空间上的内积，

它是一个复值函数，且我们

要把第三点变为共轭对称性，

即

〈u,v〉 = 〈v,u〉

这是因为对称性下无法保证

复内积的正定性．

有限维的复内积空间称为

酉空间，也可以称为复欧几

里得空间．

戱戮 对第一个变元的线性性：〈au1 戫 bu2,v〉 戽 a〈u1,v〉戫 b〈u2,v〉；
戲戮 正定性：〈v,v〉 ≥ 戰，当且仅当 v 戽 0 时取到等号；

戳戮 对称性：〈u,v〉 戽 〈v,u〉．
定义了内积的实线性空间称为 内积空间，而有限维的内积空间称为 欧几里得空间，

简称欧氏空间．

我们在本章及之后主要讲解欧几里得空间，但许多结论在无限维的内积空间上也成

立．

我们在此强调一下，我们定义的内积是关于向量本身的函数，而非关于坐标的函数．

我们喂给内积两个向量，它就吐出一个数来，且满足上面的三条性质．我们可以给线性空

间选定不同的基，从而给向量不同的坐标．但只要我们喂给内积的是同样的一对向量，那

么无论它们的坐标是什么，内积都会吐出同样一个数．另外，我们可以给线性空间赋予不

同的内积，那么我们就得到了不同的内积空间．
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例 5.1. 所有的 m × n 的矩阵构成一个线性空间，我们可以把它们“拉直” 成一个向
量，并以高中的方式定义内积

〈A,B〉 戽
m∑
i=1

n∑
j=1

aijbij

这个内积一般等价地记作

〈A,B〉 戽 扴扲戨A>B戩

其中 扴扲A 称为方阵 A 的 迹迹迹，它定义为所有主对角线元素之和，即

扴扲A 戽
∑
i

aii

这种定义了内积的函数空间

非常有用．不严谨地说，这

种内积空间被称为希尔伯特

空间．

例 5.2. 所有在区间 扛a, b扝 上平方可积的函数构成一个线性空间 L2，我们可以在其上定

义内积

〈f, g〉 戽
∫ b

a

f戨x戩g戨x戩扤x

例 5.3. 所有存在二阶矩的随机变量构成一个线性空间，我们可以在其上定义内积

〈X,Y 〉 戽 E戨XY 戩

5.1.2 范数与夹角

内积是点乘的推广，我们认为内积与向量的长度、夹角之间的关系与点乘相同．由此

我们可以以同样的方式定义向量的长度和夹角的概念．向量 v 的长度，一般称为 范数，

记作 ||v||，定义为 这里的记号和高中略有不同

||v|| 戽
√
〈v,v〉

而向量 u 和 v 的夹角 θ 定义为

扣扯扳 θ 戽
〈u,v〉
||u|| · ||v||

但这里涉及一个问题——如此定义的范数和夹角是否是合理的？也就是说，它们是否

符合我们日常对长度和夹角的认识？我们认为，一个合理的长度需要满足三个性质：

戱戮 正定性：||v|| ≥ 戰，当且仅当 v 戽 0 时取等号；

戲戮 齐次性：||cv|| 戽 |c| · ||v||；
戳戮 三角不等式：||u戫 v|| ≤ ||u||戫 ||v|| 当且仅当 u 戽 kv, k ≥ 戰 时等号成立．

可以证明，我们定义的范数满足这三条条件．这样我们就发现，这样定义的范数是合理的

对长度的表示．

而对于角度，最大的问题是，这样定义的 扣扯扳 θ 是否在 −戱 到 戱 之间？答案也是肯定

的．这就是著名的 扃扡扵扣扨批戭打扣扨扷扡扲扴扺 不等式．

定理 5.1: Cauchy-Schwartz 不等式

设 u,v ∈ V，则有
〈u,v〉2 ≤ ||u||2||v||2

当且仅当 u 戽 kv 时等号成立．
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这个不等式保证了 扣扯扳 θ ∈ 扛−戱, 戱扝，且仅当两个向量平行时有 扣扯扳 θ 戽 戰．因此，我们定

义的角度也是合理的角度．这样，我们通过内积为线性空间赋予了与我们熟悉的二维、三

维几何空间相一致的长度和角度，我们很大程度上可以把欧几里得空间想象为一个由“有

长度、有方向的箭头” 构成的空间．这会使欧氏空间中的很多性质更容易直观地理解．

顺带一提，当我们取我们高中熟悉的内积 〈a, b〉 戽
∑

i aibi 时，就得到了我们高中学

的 扃扡扵扣扨批 不等式． (
n∑
i=1

aibi

)2

≤
n∑
i=1

a2
i

n∑
i=1

b2i

而当 扃扡扵扣扨批戭打扣扨扷扡扲扴扺 不等式用于例 戵戮戲 中的函数内积时，就得到了连续型 扃扡扵扣扨批

不等式，这个不等式也很常见． 还可以写出例 5.3 的内积的

Cauchy-Schwartz 不等式，

这就是概率论中的 Cauchy

不等式．

(∫ b

a

f戨x戩g戨x戩扤x

)2

≤
∫ b

a

f2戨x戩扤x

∫ b

a

g2戨x戩扤x

例 5.4. 相关系数 考虑由所有期望为零、且二阶矩存在的一维随机变量构成的线性空

间，我们如例 戵戮戳 一样定义内积，我们会发现

〈X,Y 〉 戽 E戨XY 戩

戽 扃扯扶戨X,Y 戩

也就是说，当期望为零时，这样定义的内积就是协方差．此时自然也有 ||X||2 戽 扖扡扲戨X戩．

我们可以进一步发现

扃扯扲扲戨X,Y 戩 戽
扃扯扶戨X,Y 戩√
扖扡扲戨X戩扖扡扲戨Y 戩

戽
〈X,Y 〉
||X|| ||Y ||

也就是说，此时变量之间的夹角的余弦值就是相关系数．如果我们对 X 和 Y 取了 n

个样本，构成两个数据向量 x 和 y，并定义他们的内积为标准内积 〈x,y〉 戽 x>y． 注意此时我们已知期望为零，

所以不用做自由度的修正．

不过是否修正无所谓，因为

最终会被约掉．

那

么它们的样本协方差

σxy 戽
戱

n
x>y

正比于内积．而它们的样本相关系数，也就是 扐扥扡扲扳扯扮 相关系数

r 戽
σxy√
σ2
xσ

2
y

戽
x>y√

x>x
√
y>y

就是它们夹角的余弦值．

5.1.3 内积在给定基下的表示

对于一个欧氏空间 V，若我们选定了一组基 扛e1, · · · , en扝，则坐标为 u 戽 扛u1, · · · , un扝>

和 v 戽 扛v1, · · · , vn扝> 的两个向量实际上就是

u 戽
n∑
i=1

uiei, v 戽
n∑
j=1

vjej
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根据内积的线性性，我们可以把它们的内积写作

〈u,v〉 戽

〈
n∑
i=1

uiei,
n∑
j=1

vjej

〉

戽
n∑
i=1

n∑
j=1

uivj〈ei, ej〉

我们记 gij 戽 〈ei, ej〉，则上式可以写作

〈u,v〉 戽
[
u1 · · · un

]
g11 · · · g1n

戮戮戮
戮 戮 戮

戮戮戮

gn1 · · · gnn



v1

戮戮戮

vn


也就是

〈u,v〉 戽 u>Gv

我们称 G 为这个欧氏空间在这组基下的 度规矩阵．对于一个欧氏空间，选定了一组基后

就会有一个度规矩阵 G，使得内积可以写为 〈u,v〉 戽 u>Gv．
不是所有矩阵都可以成为度规矩阵，它需要使得内积满足定义的三个条件．我们来依

次看一下． 对于酉空间，共轭对称性要

求矩阵的共轭转置（或称为

Hermite 共轭）等于自身，

这种矩阵称为 Hermite 矩

阵．也就是说酉空间上的度

规矩阵需要是正定的

Hermite 矩阵．

戱戮 线性性：矩阵乘法自动符合；

戲戮 正定性：需要满足对任意 v 有 v>Gv ≥ 戰，且当且仅当 v 戽 0 时取等号，这样的

矩阵称为正定矩阵；

戳戮 对称性：要满足 u>Gv 戽 v>Gu，由于等式两边都是数，也就是 戱 × 戱 的矩阵，

我们可以对右侧取转置，得到 u>Gv 戽 戨v>Gu戩> 戽 u>G>v 对任意 u,v 成立，

也就是 G 戽 G>，我们称这样的矩阵为对称矩阵．

也就是说，度规矩阵需要是正定的对称矩阵．

同一个欧氏空间的度规矩阵在不同基下是不同的，我们来看一看度规矩阵在基变换下

是如何变换的．设我们给欧氏空间取了一组基 扛e1, · · · , en扝，这组基下的度规矩阵为 G，

取两个向量在这组基下的坐标为 u 和 v．我们现在取一组新的基 扛e′1, · · · , e′n扝，这两个向
量在这组基下的坐标为 u′ 和 v′．我们设基变换矩阵为 P，则有 u 戽 Pu′，v 戽 Pv′．因

此有

〈u,v〉 戽 u>Gv

戽 戨Pu′戩>G戨Pv′戩

戽 u′>戨P>GP 戩v′

也就是说，在新的基下，度规矩阵变成了 P>GP．我们说它和原来的矩阵 G 是 合同 的．

合同也是一种等价关系．就像相似戯相抵矩阵背后代表一个与基无关的不变量——线性映

射戯变换——一样，合同的矩阵代表了同一种内积在不同基下的度规矩阵．而这个体现内

积性质的、与基无关的不变量就称为度规．

5.2 正交性

5.2.1 标准正交基

在欧氏空间中有了角度的概念，我们自然就可以定义一种特殊的关系——垂直．垂直

就是夹角为 戹戰°，亦即 扣扯扳 θ 戽 戰．在抽象的欧氏空间中，我们一般称之为正交．
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定义 5.2: 正交

我们称两个向量 u,v 是 正交的 当且仅当 〈u,v〉 戽 戰．记作 u ⊥ v．

既然我们定义的角度与我们所熟悉的几何上的角度相一致，那么正交的概念自然就与

我们熟悉几何上的垂直相一致．其中最典型的体现就是勾股定理：若 u ⊥ v，则有

||u戫 v||2 戽 ||u||2 戫 ||v||2

有了长度和正交性后，我们自然会想到，我们希望基是长度为 戱 且两两垂直的，我们

称这样的基为 标准正交基．标准正交基有许多很好的性质．

首先，标准正交基的基向量之间满足 〈ei, ej〉 戽 δij，也就是说在标准正交基下的度规

矩阵为单位矩阵．在标准正交基下，内积可以简单地写作 δij 称为 Kronecker

delta，定义为

δij =

1, i = j

0, i 6= j
〈u,v〉 戽 u>v 戽

n∑
i=1

uivi

也就是说，我们高中所学的内积就是在标准正交基下的坐标的内积，这称为标准内积．的

确，我们高中都是默认选取标准正交基．

同时，在标准正交基下，一个向量 v 的第 i 个坐标分量可以简单地写作 vi 戽 〈v, ei〉，
也就是说

v 戽
n∑
i=1

〈v, ei〉ei

这个性质看似简单，却可以为我们提供非常重要的应用，其中最为著名的例子就是

扆扯扵扲扩扥扲 级数．这个例子也可以很好地解释我们在引言中提出的问题——为什么要抽象化．

抽象化后，我们可以把“箭头”的性质用于其他领域，以线性代数的视角去处理其他领域

的问题，例如函数的问题．
“足够好” 的性质例如

Dirichlet 收敛条件：只有

有限个第一类间断点，只有

有限个单调区间．

例 5.5. 扆扯扵扲扩扥扲 级数 考虑所有性质“足够好” 的周期为 戲π 的函数构成的线性空间，

定义其上的内积

〈f, g〉 戽 戱

π

∫ π

−π
f戨x戩g戨x戩扤x

可以证明，三角函数系

戱, 扣扯扳x, 扣扯扳 戲x, 扣扯扳 戳x, · · ·

扳扩扮x, 扳扩扮 戲x, 扳扩扮 戳x, · · ·

构成一组标准正交基（除了 戱，其范数为
√
戲，这也是为什么下面的 a0 项要除以 戲）．

所以如果我们希望把一个函数 f戨x戩 写成这组基的线性组合，也就是

f戨x戩 戽
a0

戲
戫
∞∑
k=1

戨ak 扣扯扳 kx戫 bk 扳扩扮 kx戩

则系数可以直接把 f 和相应的基函数进行内积得到．也就是

ak 戽
戱

π

∫ π

−π
f戨x戩 扣扯扳 kx扤x, bk 戽

戱

π

∫ π

−π
f戨x戩 扳扩扮 kx扤x

这就是著名的 扆扯扵扲扩扥扲 级数，也就是离散型 扆扯扵扲扩扥扲 变换．
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我们后面会看到，标准正交基还有许多其他的很好的性质．那么如果我们已经有了一

组基，能否把这组基转化为标准正交基呢？答案是肯定的，其中最著名的一种方式就是

扇扲扡扭戭打扣扨扭扩扤扴 正交化过程．这种方式也可以用于不构成基（向量个数少于基）的线性无

关向量组．

定理 5.2: Gram-Schmidt 正交化过程

设 v1, · · · ,vm 是 V 中的一个线性无关的向量组，则我们可以通过如下方式构造标

准正交向量组 ε1, · · · , εm：
戱戮 ε1 戽

v1

||v1||

戲戮 对于 i 戽 戲, · · · ,m，依次计算 εi 戽
vi −

∑i−1
k=1〈vi, εk〉εk

||vi −
∑i−1

k=1〈vi, εk〉εk||

这个过程非常好理解．对于已经被标准正交化的 εk, 戨k 戽 戱, · · · , i− 戱戩，向量 vi 在它

们方向上的分量为 〈vi, εk〉εk，把这些分量都减去后，vi 就只剩下了与它们都垂直的分量．
之后再进行单位化，使得范数变为 戱．

O
ε1

ε2

v3

v3 − 〈v3, ε1〉ε1 − 〈v3, ε2〉ε2

〈v3, ε2〉ε2〈v3, ε1〉ε1

由于每个 εk 都是由 v1, · · · ,vk 线性组合而成的，因此 扇扲扡扭戭打扣扨扭扩扤扴 正交化是保持

张成的空间的，即对任意的 k 有 扳扰扡扮{v1, · · · ,vk} 戽 扳扰扡扮{ε1, · · · , εk}．换一种说法就是，
扇扲扡扭戭打扣扨扭扩扤扴 正交化实际上是在 扳扰扡扮{v1, · · · ,vk} 中找到了和前面已经标准正交化的向
量正交的单位向量（且保持取向正负性不变）．

我们下面会看到，在正交性并不是很明显的线性空间中，扇扲扡扭戭打扣扨扭扩扤扴 正交化可以

使我们构造出标准正交基，从而可以利用一些很方便的性质．

例 5.6. 考虑所有不高于二次的多项式函数构成的线性空间 P2，定义内积

〈p, q〉 戽
∫ 1

−1

p戨x戩q戨x戩扤x

若要求它的一组标准正交基，我们可以先找到一组平凡的基 扛戱, x, x2扝，并对其做 扇扲扡扭-

打扣扨扭扩扤扴 正交化，得到一组标准正交基 这些多项式称为归一化

Legendre 多项式．[√
戲

戲
,

√
戶

戲
x,

戳
√
戱戰

戴
x2 −

√
戱戰

戴

]

这组标准正交基就并不很直观，但我们后面会看到，这种标准正交基可以让我们使用

正交性的一些很好的性质．

5.2.2 正交投影与极小化问题

这一节我们继续来讨论和正交性相关的重要性质．首先来介绍一个概念．
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定义 5.3: 正交补

设 V 是一个内积空间，U 是它的一个子空间，则定义 U 的 正交补 为所有正交于

U 的向量构成的集合．

U⊥ 戽 {v ∈ V | ∀u ∈ U,v ⊥ u}

显然，U 的正交补也是 V 的一个子空间，它是与 U 垂直的、占据剩余维度的一个子

空间．例如下图中，平面 U 与与其垂直的直线互为正交补．而若有一个与 U 垂直的平面，

这个平面并不是 U 的正交补．

O U

U⊥

既然 U⊥ 占据了 V 中所有剩余的维度，那么显然它与 U 的和构成整个空间 V，且这

个和是直和．即

U ⊕ U⊥ 戽 V

这样，根据直和的定义，对于每个 v ∈ V，它都可以被唯一地正交分解为 v 戽 u戫u⊥，

其中 u ∈ U,u⊥ ∈ U⊥．这样 u 完全位于 U 中，而 u⊥ 垂直于 U．也就是说，u 相当于我

们垂直地把 v 投影到了 U 上．我们称 u 为 v 向 U 的正交投影．

定义 5.4: 正交投影

设 V 是一个内积空间，U 是它的一个子空间．设 v 是 V 里的一个向量，对 v 做

正交分解

v 戽 u戫 u⊥

其中 u ∈ U,u⊥ ∈ U⊥，则 u 称为 v 向 U 的 正交投影．

我们定义变换

PU 戺 V → U

v 7→ u

称为向 U 的正交投影变换．

正交投影的名字很直观—— 对于一个向量 v 和一个子空间 U，如果我用一束垂直于

U 的光去照射，那么 v 在 U 上的“影子向量” 就是 v 向 U 的正交投影．

O
U

v

PUv

很容易直观地发现，正交投影是一个线性变换．那么正交投影变换的矩阵是什么呢？

设我们为欧氏空间 V 选定了一组标准正交基．现在考虑子空间 U，我们选定 U 的一组基

a1, · · · ,am，并记 A 戽 扛a1, · · · ,am扝．现在我们设 v ∈ V 向 U 的投影为 u．我们设 u 在
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U 中的坐标是 p（注意 p 并不是 u 在 V 中的坐标）

u 戽
m∑
i=1

piai 戽 扛a1 · · · am扝


p1

戮戮戮

pm

 戽 Ap

由于 u⊥ 戽 v − u 戽 v −Ap 与 U 垂直，因此对于 U 中的向量 ai 有

〈ai,v −Ap〉 戽 a>i 戨v −Ap戩 戽 戰

我们可以把所有的 i 戽 戱, · · · ,m 的方程综合起来，得到
a>1
戮戮戮

a>m

 戨v −Ap戩 戽 A>戨v −Ap戩 戽 0

从而得到 p 戽 戨A>A戩−1A>v．进而有 u 戽 Ap 戽 A戨A>A戩−1A>v．于是我们就得到了投

影矩阵 A戨A>A戩−1A>．

定理 5.3: 正交投影矩阵

设 V 是一个选定了标准正交基的欧氏空间，U 是 V 的一个子空间，矩阵 A 的列

向量为 U 的一组基，则 PU 的矩阵 P U 可以表示为

P U 戽 A戨A>A戩−1A>

我们在此强调一种特殊情况：当 A 的列向量是 U 的标准正交基时，有 A>A 戽 I．

这是因为 A>A 是由 A 的列向量的内积构成的矩阵．此时上式可以化简为 P U 戽 AA>．

若我们把 A 的列向量构成的标准正交基记作 e1, · · · , em，则有

AA>v 戽 扛e1 · · · em扝


e>1
戮戮戮

e>m

v

戽 扛e1 · · · em扝


e>1 v
戮戮戮

e>mv


戽 戨e>1 v戩e1 戫 · · ·戫 戨e>mv戩em

注意到 e>i v 戽 〈v, ei〉，也就是对于 U 里的一组标准正交基 扛e1, · · · , en扝，有

PUv 戽 〈v, e1〉e1 戫 · · ·戫 〈v, em〉em

这个公式显示，v 的投影 PUv 在这组基下的分量就是 v 自身在这组基下的分量．这其

实与我们上面提到的标准正交基的性质 vi 戽 〈v, ei〉 意义是相同的．如果我们把 U 的这

组标准正交基扩充为整个 V 的标准正交基 扛e1, · · · , em, · · · , en扝，那么 v 可以写作 v 戽∑
i〈v, ei〉ei．其中 i 戽 戱, · · · ,m 的部分位于 U 内，而剩余部分垂直于 U，因此我们只保

留前者就得到了 v 向 U 的投影．另外需要指出的是，这个公式在 V 是无限维内积空间时

仍然成立．我们下面会看到这个公式的作用．
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正交投影有什么用呢？一个很重要的应用是线性约束的极小化问题——如果给定一个

向量 v 和一个线性子空间 U，要求选择一个 u ∈ U 使得 u 与 v 最接近，该如何选择呢？

我们有如下定理．

定理 5.4: 线性约束的极小化问题

设 U 是 V 的一个有限维子空间，给定 v ∈ V，则对于 u ∈ U 有

||v − u|| ≥ ||v − PUv||

等号成立当且仅当 u 戽 PUv．

这个结论看起来非常显然，它的几何意义就是点到平面的垂线段最短．然而，如果我

们把它用于抽象的线性空间，则会有意想不到的应用．

例 5.7. 线性回归 投影矩阵的一个重要应用是线性回归．假设我们希望用一些量 x 戽

扛x1, · · · , xn扝> 线性地预测一个量 y．也就是建立模型 我们此处的模型中没有包含

常数项．但若要包含，只需

要在 x 中加入一个分量

x0 = 1，并加入一个对应的

参数 θ0 即可．

扞y 戽

n∑
i=1

θixi 戽 θ
>x

其中 扞y 是 y 的预测值，θ 戽 扛θ1, · · · , θn扝> 是我们需要优化的模型参数．现在如果我们拿
到了一些观测数据 x(1), · · · ,x(m) 和相对应的 y(1), · · · , y(m)．我们希望找到一组 θ 使

得我们的模型的预测值 扞y 和真实观测值 y 的均方误差最小，即最小化

m∑
i=1

戨y(i) − 扞y(i)戩2 戽
m∑
i=1

戨y(i) − θ>x(i)戩2

如果我们把所有的 x(i) 写成行向量，并纵向排成一个矩阵

X 戽


戨x(1)戩>

...

戨x(m)戩>

 ∈ Rm×n

则多个观测的预测可以写作 扞y 戽Xθ．这个问题可以进一步写成最小化 ||y − 扞y||，即最
小化

||y −Xθ||

这就是我们熟悉的极小化问题．Xθ 是一个限制在 X 的列空间中的向量，我们希望它

与 y 的差的范数最小，显然它就应该是 y 向 X 的列空间的投影．注意这里的 θ 相当

于我们上面推导投影矩阵过程中的 p，也就是在子空间中的坐标，而非在整个空间中的

坐标．于是我们就得到了 θ 的解．这个解称为 正正正规规规方方方程程程．

θ 戽 戨X>X戩−1X>y

不过这里有一个小问题，那就是 X>X 不一定可逆．事实上，扲扡扮扫戨X>X戩 戽 扲扡扮扫X．

这说明当 X 行不满秩时，也就是 x(i) 之间线性相关时，X>X 不可逆．我们在后面的

章节会给出这种情况下的处理方法．
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例 5.8. 用多项式函数近似复杂函数 假设我们希望用一个五次多项式函数 p5戨x戩 在

扛−π, π扝 上近似函数 扳扩扮x．也就是希望其均方误差∫ π

−π
戨扳扩扮x− p5戨x戩戩

2扤x

最小．我们首先想到的可能是 扔扡批扯扲 展开．函数 扳扩扮x 在点 x 戽 戰 处的五次 扔扡批扬扯扲 多

项式为

T5戨x戩 戽 x− x3

戳戡
戫
x5

戵戡

但 扔扡批扬扯扲 展开只能保证它在展开的点（也就是 戰）附近是最好的近似，不能保证它在

整个 扛−π, π扝 的区间上近似最好．此时，我们可以将这个问题视作线性约束的极小化问
题．我们在所有平方可积的函数构成的空间 L2 上定义内积

〈f, g〉 戽
∫ π

−π
f戨x戩g戨x戩扤x

这样 L2 构成一个内积空间．五次多项式函数的空间 P5 是 L2 的一个有限维子空间．

则这个问题相当于找到一个 p5戨x戩 ∈ P5 以最小化 || 扳扩扮x − p5戨x戩||．也就是 p5戨x戩 应该

为 扳扩扮x 向 P5 的投影．由于 L2 是无限维线性空间，我们难以以矩阵的方式写出投影

变换．但我们可以用我们导出的标准正交基的下的内积形式的投影变换

PUf 戽 〈f, e1〉e1 戫 · · ·戫 〈f, em〉em

那我们首先需要找到 P5 的一组标准正交基．我们可以像例 戵.戵. 一样，将一组平凡的

基 扛戱, x, x2, x3, x4, x5扝 进行 扇扲扡扭-打扣扨扭扩扤扴 正交化，得到一组标准正交基（由于形式过

于复杂，在这里就不写出了）．然后我们可以通过上式求出 扳扩扮x 向 P5 的投影，即为待

求的 p5戨x戩，其近似解为 这与 Fourier 级数中用正交

的三角函数系投影的思路很

类似，只不过我们使用了正

交的多项式函数系．如果我

们把多项式的次数提升为无

穷，则多项式成为一个幂级

数，称为广义 Fourier 级

数．

p5戨x戩 戽 戰.戹戸户戸戶戲x− 戰.戱戵戵戲户戱x3 戫 戰.戰戰戵戶戴戳戱戲x5

我们下面画出 扳扩扮x、p5戨x戩 和 扔扡批扬扯扲 多项式 T5戨x戩，可以看到 p5戨x戩 对 扳扩扮x 的拟合远

好于 T5戨x戩，黑色的 扳扩扮x 曲线已完全被 p5戨x戩 覆盖住．

−π π

sin x

T5(x)

p5(x)
x

y

5.3 欧几里得空间上的线性映射

5.3.1 伴随与转置

有了内积的概念，我们终于可以回过头来看一个我们一直都在回避的问题—— 一些线性代数书中把矩阵的

伴随定义为代数余子式构成

的矩阵的转置，或者等价地

定义为 |A|A−1．这两种伴

随一点关系都没有，只是重

名而已．

矩阵的

转置代表线性变换的什么运算．这种运算称为伴随．我们首先给出定义．
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定义 5.5: 伴随映射

设 V 和 W 是两个欧氏空间，T ∈ L戨V,W 戩，我们定义 T 的 伴随 是一个函数

T ∗ 戺W → V，满足对任意 v ∈ V,w ∈W 有

〈v, T ∗w〉 戽 〈Tv,w〉

我们用图像直观地解释一下伴随的定义：对于属于两个不同内积空间的向量 v ∈ V,w ∈
W，我们无法直接对它们做内积，而需要通过线性变换把它们映射到同一个空间中．如果

我们构造一个线性变换 T ∈ L戨V,W 戩，它可以把 v 映射进 W 里去，从而可以和 w 做内

积．而如果我们想要反向把 w 映射进 V 里，而保持相同的内积，则这个反向映射就是 T

的伴随映射．

T ∗w w

v Tv
T

T ∗

V W

, ,

下面我们来看一看伴随映射的矩阵与原映射的矩阵之间的关系．根据内积的线性性，

我们可以很容易地证明伴随映射是一个线性映射 T ∗ ∈ L戨W,V 戩．假设我们为 V 和 W 选

取了标准正交基．设 T 在这组基下的矩阵为 A，T ∗ 的矩阵为 B，则 〈v, T ∗w〉 戽 〈Tv,w〉
可以写作

v>戨Bw戩 戽 戨Av戩>w

戽 v>A>w

这个式子对任意 v,w 都成立．也就是 B 戽 A>．
对于酉空间，在标准正交基

下，映射的伴随对应于矩阵

的 Hermite 共轭，也就是

共轭转置，记作 A†．

因此我们说明了，在标准正交基下，矩阵的转置对应映射的伴随．伴随映射在下一节

中对于空间的分解有着重要的作用．

5.3.2 线性映射诱导出的子空间

我们之前介绍了与线性映射有关的两个子空间——线性映射 T ∈ L戨V,W 戩 的像空间

扉扭 T 和核 扫扥扲 T．而在内积空间中，线性映射会自动诱导出一个伴随映射 T ∗ ∈ L戨W,V 戩．

伴随映射也有其像空间和核．那么这几个子空间之间有什么关系呢？我们可以发现，它们

之间有非常有趣的正交关系． 这个关系被 MIT 讲授著名

线代公开课的 Gilbert

Strang 教授称为“线性代

数基本定理”，虽然这个名

字并没有受到广泛认可．

定理 5.5: 线性代数基本定理

设 V 和 W 是两个欧氏空间，T ∈ L戨V,W 戩，则

戱戮 扉扭 T 与 扫扥扲 T ∗ 互为正交补；

戲戮 扉扭 T ∗ 与 扫扥扲 T 互为正交补．

我们用下图表示这样的正交分解关系，并用此图对线性变换进行一下分析．这段分析

在后面学习伪逆的部分会大有作用．
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V

W

扉扭 T

扉扭 T ∗

扫扥扲 T

扫扥扲 T ∗

v

vr

vn

w

Tv 戽 w

Tvr 戽 w

Tvn 戽 0

我们来简单解释一下这个正交性的来源．如果我们为 V 和 W 选择一组标准正交基，

并把 T 写成矩阵 A，那么 T 的像空间和核就是 A 的列空间和零空间，而 T ∗ 的像空间和

核就是 A> 的列空间（也就是 A 的行空间）和零空间．那么对于 v ∈ 扫扥扲T，它的定义是

Av 戽 0．而 Av 的每一个分量实际上都是 A 的行与 v 的内积．它们都为零，这等价于 v

与 A 的行向量组是垂直的，也就是垂直于 A 的行空间．其他的正交关系同理．

这个正交关系的意义在于，它为我们提供了一种正交直和分解线性空间的方式．而在

这种直和分解下，我们可以看到一个向量的不同组分对于它的像的贡献．我们来看图中

的点和箭头．由于 V 戽 扉扭 T ∗ ⊕ 扫扥扲T 是直和分解，因此对于任意 v ∈ V 可以分解为

v 戽 vr 戫 vn，其中 vr ∈ 扉扭 T ∗，vn ∈ 扫扥扲T．在线性变换 T 下，vn 被映为 0 ∈ W，而
vr 被映为 w ∈ 扉扭 T．因此 v 被映为 0 戫w 戽 w ∈ 扉扭 T．

5.3.3 正交变换

欧几里得空间上范数和角度的结构可以引出许多新的有趣的线性变换．我们在这里先

讲其中的一种——正交变换．其余的一些变换会在后面的章节提及．

定义 5.6: 正交变换

设 V 是一个实内积空间，T ∈ L戨V 戩，若 T 保持内积，即对任意 u,v ∈ V 有 复内积空间上满足此定义的

变换称为酉变换，它在标准

正交基下的矩阵称为酉矩阵．〈u,v〉 戽 〈Tu, Tv〉

则称 T 为一个 正交变换．正交变换在标准正交基下的矩阵称为 正交矩阵．

下面让我们来直观地认识一下正交变换．从定义上来看，正交变换就是保持内积不变

的变换．这意味着两点：正交变换保持范数不变，且保持两个向量之间的夹角不变．我们

可以在二维或三维空间中想象一下什么变换满足这个性质．可以发现，只有旋转和反射这

两种变换（和它们的复合）能保持向量的长度和夹角都不变．在高维空间中实际上亦是如

此．因此我们可以说，正交变换表示旋转或反射或它们的复合．

我们还可以把正交矩阵进一步分类．如果一个正交变换是纯的旋转，那么向量之间的

方向关系应该不变，因此行列式不变号．而如果正交变换中带有一次反射，则向量之间的
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方向关系会反过来，因此行列式反号．也就是，对于正交矩阵 A： 回顾一下行列式一节所讲到

的，行列式具有反对称性．

也就是方向关系反过来后，

行列式变号．

� 若 扤扥扴A 戽 戱，则 A 表示纯的旋转（也相当于有偶数次反射）；

� 若 扤扥扴A 戽 −戱，则 A 表示旋转和一次（奇数次）反射的复合．

我们在此总结一下正交矩阵的性质．这里面实际上只有性质 戵 推向其他性质并不直

观，但其实数学上也可以很轻易地证明．

定理 5.6: 正交矩阵的等价条件

设 A ∈ Rn×n，则以下条件等价
戱戮 A 是正交矩阵；

戲戮 A> 是正交矩阵；

戳戮 A>A 戽 I（或等价地， AA> 戽 I）；

戴戮 A 的列向量构成标准正交基（或等价地，行向量构成标准正交基）；

戵戮 对任意 v 有 ||Av|| 戽 ||v||．

例 5.9. 二维旋转矩阵 Rθ 定义为

Rθ 戽

[
扣扯扳 θ − 扳扩扮 θ

扳扩扮 θ 扣扯扳 θ

]

它是一个正交矩阵，且 扤扥扴Rθ 戽 戱．对于一个向量 v，Rθ 乘上 v 就是将 v 逆时针旋

转 θ．

例 5.10. 在二维平面上，对 x 轴的反射可以写做矩阵

Rx 戽

[
戱 戰

戰 −戱

]

这也是一个正交矩阵，且 扤扥扴Rx 戽 −戱．还可以证明，二维中任意的正交矩阵一定是某
个旋转矩阵 Rθ 本身，或旋转矩阵和反射矩阵 Rx 的乘积．

5.4 平面与空间几何中的向量

本节我们来讨论平面几何与空间几何中的向量及其特殊的运算．本节不是初等线性代

数的重点内容，但有着重要的物理等应用．

在平面与空间几何中，我们总是默认空间自带一组标准正交基．例如空间几何的空间

就是三维空间 R3，上面自带一组标准正交基，我们常常写作 扛i, j,k扝 或 扛扞i, 扞j, 扞k扝．而一个

向量的三个分量我们常常称为 x, y, z．

我们首先要讨论的运算就是我们这章所引入的内积运算．在空间几何中，这种运算也

被称为向量的数量积或点乘．其定义为 u · v 戽 ||u|| ||v|| 扣扯扳 θ，其中 θ 是 u 和 v 的夹角．

可以看出，内积的几何意义是把一个向量投影到另一个向量上，再把长度相乘．

vu 扣扯扳 θ

u

由于我们默认选取的基是标准正交基，所以坐标形式的内积也就退化为简单的 u ·v 戽

u1v1 戫 u2v2 戫 u3v3．
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下面我们来看向量内积的几个物理应用．

例 5.11. 功 我们中学学过的恒力做功的公式为 W 戽 Fs 扣扯扳 θ，其中 F 是力，s 是位

移．而使用向量点乘，我们可以把上式写作

W 戽 F · s

例 5.12. 磁通量 匀强磁场 B 穿过平面区域 S 的磁通量为 戈 戽 BS 扣扯扳 θ，其中 θ 是磁

场与平面法线之间的夹角．而使用向量点乘，磁通量可以记作

戈 戽 B · S

其中 S 是“面积向量”，它的大小是面积大小，而方向指向平面的法方向．这样，面积

就成了有向面积，而通量也成为了顺着面积方向的通量．

我们要定义的下一个运算称为向量的外积，又称为向量积或叉乘．其定义如下． 向量的有很多种运算都叫

“外积”，因此我们在此不使

用这种说法．
定义 5.7: 向量积

三维向量 u 与 v 的向量积定义为一个向量，其长度满足

||u× v|| 戽 ||u|| ||v|| 扳扩扮 θ

而其方向垂直于 u 和 v，且满足右手定则．

其中右手定则的定义如下图所示．

注意向量积和我们之前学的所有运算都不同，它只能定义在三维空间中 七维空间中也可以有类似的

运算
．在更高维的

空间中，会有无数个方向同时垂直于 u 和 v，因此我们无法定义出唯一的一个向量积．

向量积的几何意义是“有向面积”．很容易注意到，两个向量 u,v 所张成的平行四边

形面积是 ||u|| ||v|| 扳扩扮 θ 这就是它们的向量积的大小．而向量积的方向则指示了两个向量
的方向关系．让面积是一个向量有时会有一些好处，例如上面的例 戵戮戱戱戮 中计算的通量可

以写成与面积向量的点乘．

下面让我们来看一下向量积的性质．

定理 5.7: 向量积的性质

向量积满足

戱戮 分配律：u×戨av戫bw戩 戽 au×v戫bu×w，戨av戫bw戩×u 戽 av×u戫bw×u；
戲戮 反交换律：u× v 戽 −v × u
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这里需要强调的是，向量积不满足结合律，也就是说 u× 戨v ×w戩 和 戨u× v戩×w 不
一定相等．事实上我们可以推出，u× 戨v ×w戩 戽 戨u ·w戩v − 戨u · v戩w．另外，向量积也不
满足消去律，也就是 u × v 戽 u ×w 不能推出 v 戽 w，而只需要 v −w 与 u 平行即可．

右消去律也同理．

下面我们给出向量积的坐标形式．当向量被写成标准正交基下的坐标时，向量积的计

算公式如下．注意这个公式要求坐标系是右手坐标系，即满足 i× j 戽 k．
u1

u2

u3

×

v1

v2

v3

 戽

∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

i j k

∣∣∣∣∣∣∣∣
戽

∣∣∣∣∣u2 u3

v2 v3

∣∣∣∣∣ i戫
∣∣∣∣∣u3 u1

v3 v1

∣∣∣∣∣ j 戫
∣∣∣∣∣u1 u2

v1 v2

∣∣∣∣∣k
戽 戨u2v3 − u3v2戩i戫 戨u3v1 − u1v3戩j 戫 戨u1v2 − u2v1戩k

最后，让我们来看一看向量积的物理应用．

例 5.13. 洛伦兹力 我们中学学习的洛伦兹力公式是 F 戽 qvB 扳扩扮 θ，并指出力的方向遵

循右手定则．而使用向量叉乘的记号，我们可以把上式写作

F 戽 qv ×B

例 5.14. 角动量 质点相对于原点的角动量定义为

L 戽 r × p

其中 r 称为径矢，表示从原点指向质点所在位置的向量；p 戽 mv 为质点的动量．
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6 特征值理论

6.1 特征值与特征向量

6.1.1 特征值与特征向量的定义

本章我们来介绍线性代数中的一个非常重要的内容——特征值理论．这部分你可能学

了半天都不知道这个理论有什么用，但现在先不要着急，后面我们会单独用一节来举例讲

解特征值的用途．我们首先给出最基本的两个概念——特征值和特征向量的定义．

定义 6.1: 特征值和特征向量

设 T ∈ L戨V 戩，若存在非零向量 v ∈ V 和标量 λ ∈ F 使得 Tv 戽 λv， 物理上一般称为本征值和本

征向量．
则称 λ 为 T

的 特征值，称 v 为对应于特征值 λ 的 特征向量．同样，我们也可以说方阵 A 的

特征值和特征向量．一个线性变换的所有特征值的集合称为它的谱．

这个定义非常直观——如果一个线性变换不改变一个向量的方向（可以反向），只是

把它进行放缩，那么这个向量就是线性变换的特征向量，而放缩的倍数就是特征值．

一个线性变换可以有多个特征值和特征向量，而一个特征向量也可以对应多个特征

值．例如变换

A 戽


戲 戰 戰

戰 戲 戰

戰 戰 −戳


有两个特征值：戲 和 −戳，其中特征值 戲 对应的特征向量是 x1戭x2 平面内的向量，而特征

值 −戳 对应的特征向量是 x3 轴上的向量．

同时，并不是所有的线性变换都有特征值和特征向量．例如我们上一章提到的旋转变

换 Rθ，当旋转角 θ 不是 π 的整数倍时，显然没有任何一个向量的像平行于自身，因此这

个变换没有特征值和特征向量．

6.1.2 特征空间

从前面的例子可以看出，一个特征值对应的所有特征向量（再加上零向量 0）构成一

个子空间．这在代数上也是显然的．我们把这个子空间称为 特征空间．特征空间没有标

准的记号，我们在此把线性变换 T 的对应于特征值 λ 的特征空间记作 Eλ戨T 戩．我们把特

征空间的维数 扤扩扭Eλ戨T 戩 称为特征值 λ 的 几何重数，记作 γλ戨T 戩． 几何重数和后面讲的代数重

数没有标准的记号，我们这

里只是采用了一本中的记号．特征空间的一个重要性质是它们互相是没有“重叠”的，用数学语言的表述就是它们

的和是直和，再换一种说法就是不同特征值的特征向量一定是线性无关的．这是因为如果

一个向量被拉伸了 λ 倍，那么它在各个方向上都只能被拉伸 λ 倍，而不能是在一个方向

上拉伸了 λ′ 倍，在另一个方向上被拉伸了 λ′′ 倍．

定理 6.1: 特征空间的直和

设 V 是有限维线性空间，λ1, · · · , λm 是其互异的特征值，则

Eλ1
戨T 戩 戫 · · ·戫 Eλm戨T 戩

是直和．
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然而，特征空间的直和

m⊕
i=1

Eλi戨T 戩 并不一定是整个空间 V．这也是很显然的，因为

有的线性变换甚至没有特征值和特征向量，自然也就没有特征空间．但是我们后面会看

到，将整个空间分成特征空间的直和是我们非常希望的情景，因为它有非常好的性质．我

们会讨论何时我们可以将整个空间分解成特征空间的直和，以及在不能做到的时候可以如

何退一步进行类似但不同的分解．

6.1.3 特征方程

对于给定的一个线性变换 T，我们如何求出其特征值呢？我们可以把特征值的定义式

化成

戨λI − T 戩v 戽 0

这是一个关于 v 的齐次线性方程组，我们要求它有非零解，也就是要求 λI − T 的行列式
为零．这就得到了我们下面的定理．

定理 6.2: 特征多项式与特征方程

对于线性变换 T，我们称关于 λ 的多项式 扤扥扴戨λI − T 戩 为其 特征多项式，方程

扤扥扴戨λI − T 戩 戽 戰 为其 特征方程．线性变换的特征值等价于其特征方程的根．

你应该能够看出为什么我们称 扤扥扴戨λI − T 戩 为一个多项式．如果我们把 T 写成一个 n

阶矩阵 A，那么 扤扥扴戨λI −A戩 就是关于 λ 的一个 n 次多项式．而代数学基本定理告诉我

们，多项式在实数域中未必有根，但在复数域中一定有根．所以我们可以说，一个实线性

空间上的线性变换不一定有特征值，但一个复线性空间上的线性变换一定有特征值．一个

特征值作为特征方程的根的重数称为其 代数重数，记作 µλ戨T 戩．

而把特征值和特征向量的定义式化为 戨λI −T 戩v 戽 0 后，我们会发现特征值 λ 所对应

的特征空间就是这个方程的解空间，再进一步说就是 戨λI − T 戩 的核

Eλ戨T 戩 戽 扫扥扲戨λI − T 戩

而 λ 的几何重数就是 γλ戨T 戩 戽 扤扩扭扫扥扲戨λI − T 戩，也就是 扤扩扭V − 扲扡扮扫戨λI − T 戩．
我们在此给出一个定理：一个特征值的几何重数不大于其代数重数，即

γλ戨T 戩 ≤ µλ戨T 戩

我们先不对此进行证明，但是后面我们引入了新的概念后，会对这个稍稍加以解释．

6.2 线性变换的对角化

6.2.1 线性变换对角化的条件

我们上一节说了，我们非常希望能将线性空间分解为特征空间的直和

V
?
戽

m⊕
i=1

Eλi戨T 戩

这是因为，这样的话我们可以给每个特征空间 Eλi戨T 戩 选一组基，再把它们合在一起构成

整个 V 的基．这时，如果我们把一个向量 v ∈ V 写成这组基下的坐标，那么线性变换 T
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就是把它的每个分量拉伸相对应的特征值倍．若将 T 写成这组基下的矩阵，就是由特征

值构成的对角矩阵，其中每个特征值重复其几何重数次． 对角矩阵可以简写为

diag(λ1, · · · , λ2, · · · , λm)

D 戽



λ1

戮 戮 戮

λ1

λ2

戮 戮 戮

λm


对角矩阵的对角元一定是特

征值重复其重数次，但是它

们之间的顺序是可以交换的，

只要把 P 的列向量按照同

样的方式交换即可．

此时我们称线性变换 T 是 可对角化的．如果我们把 T 写成了另外一组基下的矩阵

A，那么我们可以通过基变换将 A 变为对角矩阵 D 戽 P−1AP，此时我们也说矩阵 A 是

可对角化的．

例 6.1. 矩阵的求幂 对角化的矩阵可以让我们非常简单地表示线性变换．例如如果我们

相对一个向量 v 进行连续 戱戰戰 次线性变换 T，也就是求出 T 100v，如果我们要把 T 表

示成随便一组基下的一个复杂的矩阵 A，那么求 A100 是非常复杂的．但如果我们把它

对角化成 D 戽 P−1AP，那么求幂就可以化为

A100 戽 戨PDP−1戩100 戽 PD100P−1

而对角矩阵的幂就是其对角元的幂构成的矩阵

D100 戽



λ100
1

. . .

λ100
2

. . .

λ100
m


这样我们就可以很方便地求出 A100．希望这个例子能让你理解矩阵对角化的好处．

但我们也说了，这个愿望不一定能实现．整个空间 V 不一定能写成特征空间的直和，

因而也并不是所有的线性变换都可以对角化．从上面的推理很容易看出，V 是特征空间的

直和是线性变换可对角化的充要条件．此时特征值的几何重数的和为 扤扩扭V．而由于几何

重数不大于代数重数，而代数重数的和也为 扤扩扭V，因此我们可以得到这个条件也等价于

每个特征值的几何重数等于代数重数．我们把这几个条件总结如下．

定理 6.3: 可对角化的等价条件

设 V 是有限维线性空间，T ∈ L戨V 戩，则下列条件等价：

戱戮 T 可对角化；

戲戮 V 可以分解为 T 的特征空间的直和；

戳戮 V 有由 T 的特征向量构成的一组基；

戴戮 T 的所有的特征值的几何重数都等于其代数重数．
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6.2.2 对称变换的对角化

本节我们来一种一定可以被对角化的特殊线性变换——自伴变换．

定义 6.2: 自伴变换与对称矩阵

设 V 是一个线性空间，线性变换 T ∈ L戨V 戩．若 T 满足 T 戽 T ∗，则我们称 T 是一

个自伴变换． 在复线性空间上，自伴变换

也被称为 Hermite 变换，

这是因为其矩阵满足

Hermite 共轭等于自身，即

A† = A，我们称这种矩阵

为 Hermite 矩阵．

当 V 是有限维实线性空间时，自伴变换在标准正交基下的矩阵满足

A> 戽 A，我们称这种矩阵为对称矩阵．因此实线性空间上的自伴变换也称为对称

变换．

对称变换最重要的特点是它一定可以对角化，这称为有限维实线性空间的谱定理．这

个定理我们不予证明．

定理 6.4: 实谱定理

设 V 是有限维实线性空间，T 是 V 上的对称变换，则存在 V 的一组标准正交基使

得 T 在这组基下的矩阵为对角矩阵． 事实上，在复线性空间上的

Hermite 变换也一定可以对

角化，且其特征值一定为实

数．

也就是说，若 A 是对称矩阵，则存在正交矩

阵 P 使得 P−1AP 为对角矩阵．

这表明，对称变换是一类性质特别好的变换——只要选择一组很好的基（而且这组基

可以是标准正交基），那么对称变换完全可以简单地看作把每个分量进行拉伸，其中拉伸

的倍数是该方向对应的特征值．

在这一节中，我们仅仅是简单地给出这个定理，而不做深入探讨．我们在下一节中会

举例说明对称矩阵对角化的应用．同时在在最后一章讲解二次型时，我们也会看到对称矩

阵对角化的应用．

6.3 特征值的应用

我们在前两节给出了与特征值有关的大量的定义和定理，但你可能到现在仍然不知道

特征值究竟有何意义．这一节让我们来举几个例子．

6.3.1 线性动力系统

生活中有很多事物的变化规律是线性的，或可以被近似为线性的．让我们来看两个例

子．

例 6.2. 扌扥扳扬扩扥 种群增长模型 考虑一种生物，它的寿命是 r 年．对于一个种群，在年份

t 时，其种群的各个年龄的个体数目可以用一个向量来表示

xt 戽


x

(0)
t

x
(1)
t

...

x
(r)
t


其中 x

(i)
t 表示年龄为 i 的个体的数目．现在考虑种群的自然增长．若平均每个年龄为

i 的个体在一年内会产生 fi 个个体，同时它有 si 的概率活到下一年．则在期望的意义
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下，种群的增长满足

x
(0)
t+1 戽

r∑
i=0

x
(i)
t fi,

x
(k)
t+1 戽 sk−1x

(k−1)
t , 戱 ≤ k ≤ r

或者写成矩阵的形式 
f0 · · · fr−1 fr

s0 · · · 戰 戰
...

. . .
...

...

戰 · · · sr−1 戰



x

(0)
t

...

x
(r)
t

 戽


x

(0)
t+1

...

x
(r)
t+1


我们称

L 戽


f0 · · · fr−1 fr

s0 · · · 戰 戰
...

. . .
...

...

戰 · · · sr−1 戰


为种群增长的 扌扥扳扬扩扥 矩阵．这样 扌扥扳扬扩扥 模型可以写作

xt+1 戽 Lxt

例 6.3. 神经网络 考虑有由 n 个神经元构成的神经网络．我们把整个神经网络的活动

强度记为一个随时间变化的向量

x戨t戩 戽


x1戨t戩
...

xn戨t戩


其中 xi戨t戩 表示第 i 个神经元在时间 t 的活动强度．现在我们假设任意两个神经元之间

都有双向的突触连接，且神经元 i 接收神经元 j 的突触输入的强度为 wij．则每个神

经元的活动的变化可以模拟为

τ
扤xi
扤t

戽
n∑
j=1

xjwij − xi

其中 −xi 项代表衰减，即当没有突触传入时，神经元的活动应自发衰减至零．而 τ 称

为时间常数，表示神经元活动变化的快慢．我们可以把上面的微分方程写为矩阵形式

扤

扤t
x 戽

戱

τ
戨W − I戩x

上面两个例子中，向量 x 随时间的演化方程都是线性的，我们称 x 为一个 线性动力

系统．其中第一个例子是离散线性动力系统，第二个例子是连续线性动力系统．

我们下面以连续线性动力系统为例，讨论特征值与特征向量其中的应用．考虑一个二

维的连续线性动力系统

扤

扤t

[
x1

x2

]
戽 A

[
x1

x2

]

戶戸
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我们来看一看在不同特征值的情况下系统会如何演化．

首先看一种比较简单的情况：设

A 戽

[
−戱 戱

戴 戲

]

此时 A 有两个特征值：戳 和 −戲，其中特征值 戳 所对应的特征向量是平行于 扛戱, 戴扝> 的向

量，而特征值 −戲 所对应的特征向量是平行于 扛戱,−戱扝> 的向量．
我们现在来画一个图．我们把系统的状态看作 x1戭x2 平面上的点，这个平面称为相平

面，而系统的演化就是点在相平面上运动．我们在相平面的上每个点 x 处画上一个小箭

头，这个箭头的方向指向 Ax 的方向．由于这个方向就是 x 的变化的方向，也就是此处

的点的运动“速度”的方向，因此系统如果从 x1戭x2 平面上的一点开始演化，那么系统所

在的点会跟着相平面上箭头的方向运动．我们把这种图称为动力系统的 相图，这是分析

动力系统的很常用的方法．

下面我们来画出这个动力系统的相图，如下图所示．
画相图的网站是 点击此处，

你可以多尝试一些有不同特

征值的线性系统．

我们会发现，所有位于直线 x2 戽 戴x1 上的箭头都指向沿着这条直线的远离原点的方

向，而所有位于直线 x2 戽 −x1 上的箭头都指向原点．这实际上就是特征值的定义：平行

于 扛戱, 戴扝 的向量在 A 下被映射为自身的 戳 倍，所以该直线上的点的“运动速度” 是沿着

这条直线向外的．而平行于 扛戱,−戱扝的向量被映为自身的 −戲倍，因此这条直线上的点的速
度是反向的，指向原点．而不在这两条直线上的点的速度方向实际上是将它沿着这两个方

向分解后的线性组合．

此时我们就可以很容易地分析系统状态的演化了．当系统从某个初始状态释放时，它

会沿着箭头的方向运动，最终一定会沿着直线 x2 戽 戴x1 的某个方向发散出去，也就是当

t → ∞ 时，x2/x1 → 戴．图中的红线显示了系统在一个给定初值下的演化．系统首先被

x2 戽 −x1 附近的箭头拉到原点附近，然后在原点附近遇到了 x2 戽 戴x1 附近的箭头，最终

随着箭头发散至无穷远．

我们接下来看另外一种情况：设

A 戽

[
−戱 戲

−戱 −戱

]

此时 A在实数域下没有特征值，而在复数域下的特征值是一对共轭复数 −戱戫
√
戲和 −戱−

戶戹

https://homepages.bluffton.edu/~nesterd/apps/slopefields.html
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√
戲． 由于特征方程是一个二次方

程，因此它的两个根一定是

一对共轭复数．

复特征值代表什么呢？答案是，复特征值代表旋转．从下面的相图可以看出，这个

线性系统没有任何一条直线沿着自身发散或收敛，而是整个相平面以旋转的方式收敛于原

点．实际上此时系统是发散还是收敛取决于复特征值的实部——若实部大于零则发散，实

部小于零则收敛．而若实部等于零，则意味着系统可以在一个稳定的圆周上旋转．我们后

面会对此给出一定的解释．

上面主要是对线性动力系统演化的定性讨论，实际上我们是可以求出系统演化的解析

解的．方程
扤x

扤t
戽 Ax

实际上就是一个一阶常系数线性常微分方程组．我们在此不讨论一般情况，只讨论当 A

可被对角化的特殊情况，此时可以让你体会到矩阵对角化的意义． 我们上面讨论的二维线性动

力系统中，若存在两个不同

的特征值，则它们的特征空

间的和一定是整个平面，因

此一定可以对角化．

若 A 可以被对角化为

D 戽 P−1AP，则我们可以进行换元 x′ 戽 P−1x．此时微分方程组变为

扤x′

扤t
戽Dx′

我们设 D 戽 扤扩扡执戨λ1, · · · , λn戩，其中 λ1, · · · , λn 是其特征值（按照重数重复，总共当
作有 n 个）．则实际上此时的微分方程组中每个分量都只和自己有关，也就是不同的分量

被“解耦” 了．即
扤x′i
扤t

戽 λix
′
i

这个方程的解就是显然的了，即

x′i 戽 ci扥
λit

我们将 x′ 变回 x，就得到了最终的解

x 戽 Px′ 戽 P


c1扥

λ1t

戮戮戮

cn扥
λnt


同时，我们也可以解释特征值为复数时的旋转现象．仍然上面的以二维线性动力系统

为例，我们把解展开写作 x1 戽 p11c1扥
λ1t 戫 p12c2扥

λ2t

x2 戽 p21c1扥
λ1t 戫 p22c2扥

λ2t

户戰
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欧拉公式是

e
iθ

= cos θ + i sin θ

当 λ1, λ2 为复数，它们只能互为共轭复数．设 λ1 戽 a戫 b扩, λ2 戽 a− b扩，由欧拉公式得x1 戽 p11c1扥
at扛扣扯扳戨bt戩 戫 扩 扳扩扮戨bt戩扝 戫 p12c2扥

at扛扣扯扳戨bt戩− 扩 扳扩扮戨bt戩扝

x2 戽 p21c1扥
at扛扣扯扳戨bt戩 戫 扩 扳扩扮戨bt戩扝 戫 p22c2扥

at扛扣扯扳戨bt戩− 扩 扳扩扮戨bt戩扝

但我们知道，我们的系统中 x1 和 x2 只能取实数，因此这里面的虚部必须消掉．由于

四个 p 也是复数，因此实部也会有正弦项，它会和余弦项合并为一个带有相位的余弦项．

这样我们的解一定形如 x1 戽 c′1扥
at 扣扯扳戨bt戫 φ1戩

x2 戽 c′2扥
at 扣扯扳戨bt戫 φ2戩

这个解中，x1 和 x2 的相位不同的余弦项就导致了向量 x 的旋转，而实指数项 扥at 就导致

了旋转半径的变化．显然，当 a < 戰 时，旋转半径向零衰减，而当 a > 戰 时，旋转半径发

散至无穷．

6.3.2 特征值与物理

在上一节中，我们看到了特征值在分析线性动力系统的演化中的应用，也就是求解线

性微分方程组的应用．但你可能会觉得，特征值在其中只是作为一个数学的工具罢了，并

不能配上“特征”这么一个重要的名字．那么，特征值在现实世界中是否有对应呢？答案

是肯定的，只不过在日常生活中没有直接对应罢了．这一节，我们来看一下特征值在量子

力学中起到一个如何重要的地位．

量子力学中，一个粒子没有确切的位置、速度等物理量，粒子的状态由抽象的“态”

来表示．态满足一个非常重要的基本原理，称为态叠加原理：任何可能的态的线性叠加仍

然是可能的态． 态空间是一个完备的复内积

空间，且一般是无穷维的，

称为 Hilbert 空间．

我们会发现，这实际上就是在说，态构成一个线性空间．这个空间称为态

空间，其中的元素称为态矢量．物理学家一般习惯把态矢量记作 |戉〉 这种奇怪的符号．
我们知道，量子系统的观测是有不确定性的，也就是说对同一个系统每次观测可能得

到不同的结果．而且观测的过程会导致态的“坍缩”，也就是观测会导致态变成一个被观

测量为观测到的值的态．例如，一个粒子的能量可能是不确定的，但如果我们对该粒子的

能量进行观测，得到了结果 E，那么该粒子的的态在观测后会变为一个能量确定为 E 的

态．那么什么东西会把一个数（被观测量）和一个向量（态矢量）联系在一起呢？ 物理学家一般称特征值为本

征值，称特征向量为本征态．
答案就

是态空间上的线性变换，物理学家称之为“算符”．这就引出了量子力学的另一个基本原

理——算符假设：

每一个可观测量 Q 都对应着一个算符 扞Q．对 Q 的观测一定会

得到 扞Q 的一个本征值 q，且粒子的态会坍缩至 q 对应的本征态

下面我们来看量子力学中的一个经典模型．假设有一个粒子在一维空间中运动，空间

中的势能满足在 扛戰, a扝 中为零，在其他区域中为正无穷．也就是说粒子被限制在区间 扛戰, a扝

中运动．这个模型称为一维无限深方势阱．一维无限深方势阱中所有可能的态构成态空

间，而其中的元素就是态矢量．我们要把态矢量表示出来，自然要选一组基．我们常常取

与粒子位置有关的一组基，此时态矢量的坐标就是波函数． 这一般称为位置表象．一维无限深方势阱中的任意

一个波函数可以写成 其实我们这里写出的函数叫

做定态波函数，它比真正的

波函数少了时间项，但不影

响这个问题的讨论．
ψ 戽

∞∑
k=1

ck 扳扩扮

(
kπ

a
x

)

户戱
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其中 c1, · · · 为任意常数．现在我们希望观测粒子的总能量 E．总能量对应的算符称为哈

密顿算符，它表示为

扞H 戽 − ~2

戲m

扤2

扤x2
戫 V

可以看到，这个算符长得并不像一个矩阵，这是因为我们的态矢量是无穷维向量．但是可

以很容易地验证这是一个线性变换．它的本征方程 扞Hψ 戽 Eψ 即为定态薛定谔方程．

在一维无限深方势阱中，V 戽 戰，所以哈密顿算符只剩下第一项．求解哈密顿算符的

本征值和本征函数就是找到标量 E 和矢量（即为定态波函数） ψ 使得

− ~2

戲m
ψ′′ 戽 Eψ

我们会发现，上面给出的波函数中求和的每一项

ψk 戽 扳扩扮

(
kπ

a
x

)
, k 戽 戱, 戲, · · ·

就是 扞H 的一个本征函数，而它对应的本征值为

Ek 戽
k2π2~2

戲ma2
, k 戽 戱, 戲, · · ·

也就是说，每次测量得到的能量一定是一个 Ek，而系统的波函数会坍缩至对应的 ψk．

另外，我们还要求测量到的值一定是一个实数，而不能是复数，并且要求本征函数之

间是互相正交的．这样的算符应该满足什么条件呢？实际上，这就是我们前面所说的自伴

变换，也就是 扈扥扲扭扩扴扥 变换．

6.4 奇异值分解

6.4.1 奇异值分解

我们上面说过，把线性变换写成对角矩阵可以极大地方便我们分析线性变换的性质．

但并不是所有的线性变换都可以被对角化的．那么我们能否降低一下我们的要求，让线性

变换在一种更弱的要求下写成对角矩阵呢？

回顾一下我们讨论矩阵相抵和秩时所证明的一个结论：任意一个矩阵 A 都相抵于一

个主对角线上有一些 戱、其他元素全部为零的矩阵，称为 A 的相抵标准型．即存在可逆

矩阵 P 和 Q 使得

P−1AQ 戽



戱

戱
戮 戮 戮

戱


这意味着任意一个线性映射 T ∈ L戨V,W 戩都可以在选定了一组合适的基的情况下写成上面

的这种矩阵．但写成这种矩阵其实并没有什么意义，它除了告诉我们线性映射的秩以外，

任何信息都提供不了，和方阵的相似对角化完全没有可比性．

回顾一下我们在 戵戮戳节中讲的，任意一个对称变换都在一组标准正交基写成对角矩阵．

如果我们在选基的时候要求是标准正交基，那么任意一个线性映射还可以做类似于上面的

对角化吗？实际上，我们的确仍然可以把矩阵写成一个只有主对角线上有元素的矩阵，这

就是奇异值分解．我们下面用矩阵的语言来描述奇异值分解．

户戲
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定理 6.5: 奇异值分解（SVD）

设 A ∈ Rm×n，且 扲扡扮扫 A 戽 r．则存在 m 阶正交矩阵 U 和 n 阶正交矩阵 V 使得

U−1AV 戽 Σ 戽



σ1

σ2

戮 戮 戮

σr


其中 σ1, · · · , σr 为正实数，称为 A 的 奇异值． 和特征值分解一样，奇异值

之间也是可以换顺序的，只

要我们把左奇异向量和右奇

异向量按照同样的方式换序．

我们一般将奇异值由大到小

排列．

U 的列向量称为 A 的左奇异向

量，V 的列向量称为 A 的右奇异向量．

奇异值分解对于线性映射来说，意思是：对于任意一个 T ∈ L戨V,W 戩，我们都可以在

V 和 W 中各找到一组标准正交基，使得写成坐标后有

T 戺



v1

戮戮戮

vr

vr+1

戮戮戮

vn


7→



σ1v1

戮戮戮

σrvr

戰
戮戮戮

戰


当然，我们也可以对方阵做奇异值分解，这就相当于对线性变换 T ∈ L戨V 戩，我们把

原像和像用不同的基下的坐标表示．不过一个方阵如果可以被正交矩阵对角化，那么它的

奇异值实际上就是特征值的绝对值，而左右奇异向量就是调整了正负的特征向量．因此，

奇异值与特征值有一定类似之处．

下面我们来具体地看一下奇异值分解和特征值分解的关系．

设 A ∈ Rm×n，那么我们如何用 A 构造一个可以特征值分解的矩阵呢？其实非常简

单，我们考虑矩阵 A>A， 矩阵 AA> 也类似．它是一个对称矩阵，因此一定可以对角化．而为了看到 A>A

的特征值分解和 A 的奇异值分解的关系，我们首先把 A 奇异值分解为 UΣV −1，则有

A>A 戽 戨V −1戩>Σ>U>UΣV −1

而由于 U 和 V 都是正交矩阵，即 U−1 戽 U>，V −1 戽 V >，我们可以把中间的 U>U 消

掉，并把 戨V −1戩> 简化为 V，得到

A>A 戽 V 戨Σ>Σ戩V −1

很容易发现

Σ>Σ 戽



σ2
1

σ2
2

戮 戮 戮

σ2
r


∈ Rn×n

也就是说，正交矩阵 V 把 A>A 对角化为 Σ>Σ．

户戳
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定理 6.6: 奇异值分解和特征值分解的关系

A 的奇异值就是 A>A 或 AA> 的特征值的平方根． A 的左奇异向量就是对角化

AA> 的标准正交向量，A 的右奇异向量就是对角化 A>A 的标准正交向量．

6.4.2 奇异值分解的应用

我们在本节讨论奇异值分解的一个重要应用——主成分分析（扐扃扁）．扐扃扁 是线性数

据降维最常用的方法，在数据可视化、数据压缩、数据降噪等方面有着广泛的应用．

假设我们要寻找某个事物的统计特征，我们总共统计了 n 个这种事物，每个事物统计

了 m 个特征．这样我们就得到了 n 个数据点 x(1), · · · ,x(n)，每个数据点有 m 维 x(i) 戽

扛x
(i)
1 , · · · , x(i)

m 扝>．这相当于在 m 维空间中有 n 个数据点．我们的问题是，在这 m 维空

间中，哪个方向最能体现数据的差异？例如下图中，左图的数据点在红线的方向上差异

最大，这个方向被称为第一主成分（扐扃戱）．找到第一主成分后，我们继续问，在垂直于

扐扃戱 的所有方向上，哪个方向数据的差异最大？例如下图中就是绿线的方向，这被称为第

二主成分（扐扃戲）．以此类推，我们最多能找到 m 个主成分．

换一种说法，这就相当于我们在这 m 维空间中找到一组新的标准正交基 扛扐扃戱戬 · · · 戬
扐扃m扝，使得数据在第一个分量上的方差尽量大，在此前提下使得数据在第二个分量上的

方差也尽量大，依此类推．

我们首先介绍一个统计学概念：数据的协方差．对于数据的两个分量 xi 和 xj，每个

分量有 n 次观察，我们定义它们的协方差

σij 戽
戱

n− 戱

n∑
k=1

戨x
(k)
i − 或xi戩戨x

(k)
j − 或xj戩

显然，一个分量和它自身的协方差就是其方差 σii 戽 σ2
i．我们可以把协方差排列成一个矩

阵，称为协方差矩阵

S 戽


σ11 σ12 · · · σ1m

σ21 σ22 · · · σ2m

戮戮戮
戮戮戮

戮 戮 戮
戮戮戮

σm1 σm2 · · · σmm


这是一个对称矩阵，因为 σij 戽 σji． 对于非中心化的数据，我们

一般首先会对其做中心化．
现在我们假设数据是中心化的，即所有的数据点的均

值位于原点处．我们把每个数据点写作列向量，并横向排列成数据矩阵X 戽 扛x(1) · · · x(n)扝．

户戴



戶 特征值理论

这样，协方差矩阵可以写作

S 戽
戱

n− 戱
XX>

我们之前说到，扐扃扁 就是希望找到一组新的标准正交基，使得每个分量代表其递降

的主成分．我们将这个过程的基变换矩阵写作 P，则 P 是一个正交矩阵，且其列向量代

表了新的基，也就是主成分．设新基下的数据矩阵为 X ′，则有 X 戽 PX ′．我们把这个

变换带进上式，得到

S 戽
戱

n− 戱
PX ′X ′>P> 戽 PS′P−1

其中 S′ 是基变换后的协方差矩阵．由上面对主成分的定义，我们希望 S′ 中，方差项（也

就是对角项）是递减的．并且由上面的图也可以看出，变换后的各个主成分之间应该是不

相关的，也就是任意不同的两个分量的协方差均为零．此时 S′ 形如

S′ 戽


σ′11

戮 戮 戮

σ′mm

 戽


σ′21

戮 戮 戮

σ′2m


这其实就是在对协方差矩阵 S 进行相似对角化，其对角元就是特征值，而 P 的列向量就

是对应的特征向量．我们之前又说了，P 作为基变换矩阵，其列向量代表了新的基，也就

是主成分．也就是说，扐扃戱 就是最大的特征值所对应的特征向量，扐扃戲 是第二大的特征

值所对应的特征向量，以此类推．

而我们上面讨论过，对 S ∝XX> 进行特征值分解就是对 X 进行奇异值分解，矩阵

P 就是 X 的左奇异矩阵 U．而将 XX> 的特征值开平方得到 X 的奇异值的过程并不改

变它们的大小顺序．因此我们可以说，PCA 就是在对数据矩阵进行奇异值分解．

X 戽 UΣV −1

其中 Σ 中的奇异值以降序排列．则 U 的第 k 列（第 k 个左奇异向量）就是第 k 主成分

扐扃k．Σ 中的第 k 个奇异值正比于 扐扃k 方向的标准差．

扐扃扁是一种非常重要的算法，常用于数据压缩、降维等．扐扃扁还有很多有趣的应用，

例如所谓的“特征脸”．人们把许多人脸照片拿来做 扐扃扁，得到的 扐扃戱 实际上就是人群

中差异最大的特征所构成的一张虚拟的脸，扐扃戲 是与 扐扃戱 无关的差异最大的脸，以此类

推．而任何一个人的人脸照片都可以写作这些特征脸的线性组合．
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6.4.3 伪逆

伪逆的概念实际上并不属于特征值分解或奇异值分解这个章节，但由于计算伪逆是通

过奇异值分解进行的，因此我们将这个概念在这一节进行讨论．

我们之前说过，一个任意的线性变换 T ∈ L戨V,W 戩 并不一定存在逆，这是因为它存在

零空间，或者列空间没有填整个空间． 请回顾一下 5.3.2 的那张

图．
我们把 V 正交地直和分解为 V 戽 扉扭 T ∗ ⊕ 扫扥扲 T，

则任意一个 v ∈ V 都可以唯一地被分解为

v 戽 vr 戫 vn

其中 vr ∈ 扉扭 T ∗，vn ∈ 扫扥扲 T．这两部分相互正交，且分别被映为 w ∈ 扉扭 T ⊆ W 和

0 ∈ W，因此 v 被映为 w 戫 0 戽 w ∈ W．这意味着我可以随便改变 vn 的成分而不改变

其像．

对于空间 W 我们可以作类似的正交直和分解 W 戽 扉扭 T ⊕ 扫扥扲 T ∗．这样对于任意一

个 w ∈W，我们也可以做唯一的正交分解

w 戽 p戫 e

其中 p ∈ 扉扭 T，e ∈ 扫扥扲 T ∗．但是这样分解并不能让我们把 w 唯一地映回 V，这是因为

戱戮 对于 p，有无数个 v ∈ V 被映为 p．这是因为我们可以向 v 中随便添加 V 中核

空间的成分而不改变其像；

戲戮 对于 e，没有任何 v ∈ V 被映为 e．这是因为 V 中任何向量的像都包含在 扉扭 T

里，而 扉扭 T 和 扫扥扲 T ∗ 是正交的．

这意味着我们无法找到一个逆映射 T−1 使得 TT−1 戽 I．但是如果我们想找到一个足够合

理的映射，将 w 尽量接近地映回其原像呢？一个很简单的想法就是

戱戮 对于 p，虽然有无数个 v ∈ V 被映为 p，但它们都只相差核空间的成分．我们可

以令核空间的成分为 0，也就是找到唯一的 v ∈ 扉扭 T 使得 Tv 戽 p；

戲戮 对于 e，既然没有任何 v ∈ V 被映为 e，那我们就无视掉这个成分，或者说把这

个成分映回为 0．

这样定义出的“逆映射” 称为 T 的 才扯扯扲扥戭扐扥扮扲扯扳扥 伪逆，简称 伪逆，又称为广义

逆，记作 T+．

V

W

扉扭 T

扉扭 T ∗

扫扥扲 T

扫扥扲 T ∗

v

p

e

w
T+w 戽 v

T+e 戽 0

T+p 戽 v
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显然，若 T ∈ L戨V,W 戩，则 T+ ∈ 戨W,V 戩．且若 T 是可逆的，则 T+ 戽 T−1．若 T 不

可逆，那么 TT ∗ ∈ L戨V 戩 虽然不是恒等映射，但它仍然把 扉扭 T ∗ 的部分保持不变，只是

把 扫扥扲 T 的部分映为了零．若我们分别取了 扉扭 T 和 扫扥扲 T 的一组基按顺序拼成 V 的一

组基，则写成矩阵有

AA+ 戽

[
Ir

0

]
此处等式右侧用到了分块矩阵，上面的 r 行表示在 扉扭 T ∗ 的部分（其中 r 戽 扲扡扮扫 T），

下面的 扤扩扭V − r 行表示在 扫扥扲 T 中的部分．同样，如果我们取 扉扭 T 和 扫扥扲 T ∗ 的基按

顺序拼成 W 的一组基，我们也可以得到 A+A 是相同的矩阵（但下面的零矩阵块变成了

扤扩扭W − r 行）．
那么对于一个任意的线性映射的矩阵 A，我们该如何求解其伪逆呢？我们在这一节中

讲解伪逆是因为，伪逆的常用计算方式涉及了奇异值分解．我们先直接给出下面的结论，

再给出解释．

定理 6.7: 用奇异值分解求伪逆

设 A ∈ Fm×n，若 A 的奇异值分解为 A 戽 UΣV −1，则有

A+ 戽 V Σ+U−1

其中 Σ+ 是把 Σ 中的奇异值都取倒数，再做转置得到的矩阵．即

Σ+ 戽


戱/σ1

戮 戮 戮

戱/σr

 ∈ Fn×m

这个式子在代数上很容易理解，伪逆作为逆的推广，自然应该和逆有类似的性质．于

是我们认为它大概应该有 A+ 戽 戨UΣV −1戩+ 戽 戨V −1戩+Σ+U+，而对于可逆矩阵 U 和

V，其伪逆就是逆，所以它可以被化简为 A+ 戽 V Σ+U−1．而对于近似于对角矩阵的 Σ，

像对角矩阵的逆一样将每个元素取倒数似乎是最合理的选择．于是我们就得到了上面的定

理．

我们还可以从几何角度理解一下这个式子．我们前面说过，奇异值分解意味着对于

T ∈ L戨V,W 戩 的在一组标准正交基下的矩阵 A，我们一定可以给 V 和 W 各选择一组新的

标准正交基，使得 T 在这两组新基下的矩阵为 Σ，即

T 戺



v1

戮戮戮

vr

vr+1

戮戮戮

vn



 扲扯扷 A

扮扵扬扬 A

7→



σ1v1

戮戮戮

σrvr

戰
戮戮戮

戰



 扣扯扬 A

扮扵扬扬 A>

我们在上面标出了属于四个字空间的各个分量．而 T 的伪逆 T+ 应该将 W 的向量映

回 V，且它应该无视掉属于 扮扵扬扬 A> 的分量，并让像的所有属于 扮扵扬扬 A 分量都为零．即

在同一组基下，有
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T+ 戺



w1/σ1

戮戮戮

wr/σr

戰
戮戮戮

戰



 扲扯扷 A

 扮扵扬扬 A

7→



w1

戮戮戮

wr

wr+1

戮戮戮

wm



 扣扯扬 A

 扮扵扬扬 A>

这样就很容易看出，A+ 奇异值就是将 A 的奇异值的倒数，同时它还需要把 W 映

回 V，因此行和列的数目要交换．因此 A+ 的奇异值分解得到的矩阵就是就是我们定义

的 Σ+．而由于它们使用的是同一组基，因此用于基变换的正交矩阵 U 和 V 也是一样的，

只需要将它们的顺序反过来就可以了．从而我们就直观地推出了定理 戶戮户．

那么，伪逆有什么作用呢？其中一个重要作用是，它是无解的线性方程组的最小二乘

解．回顾一下我们在 戴戮戱戮戳 中讲过，一个非齐次线性方程组 Ax 戽 b 不一定有解．那么在

无解的时候，我们能否求出一个 x，使得 Ax 和 b 足够接近，也就是最小化 ||Ax − b||
呢？此时的 x 实际上就是 A+b．这个结论常常用于线性回归．

定理 6.8: 伪逆求线性回归

对于线性回归问题 扞y 戽Xθ，其最小二乘解可以表示为

θ 戽X+y

而我们之前在例 戵戮户中提到过的当X 的列向量线性无关时的正规方程解 戨X>X戩−1X>y

实际上就是上式的特例．也就是说，当 X 列满秩时，有 X+ 戽 戨X>X戩−1X>．
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7 二次型

7.1 双线性型与二次型

这一章，我们来用线性代数研究一种并不线性的函数——二次型．首先我们来介绍一

个背景知识概念．

定义 7.1: 双线性型

设 V 是一个实线性空间，若函数 B 戺 V × V → R 满足对两个位置都是线性的，即 在复线性空间上，我们一般

要求第二个变元是半线性的，

即乘法部分变为

B(u, av) = āB(u,v)

我们称 B(·, ·) 为一个半双
线性型．

B戨au1 戫 bu2,v戩 戽 aB戨u1,v戩 戫 bB戨u2,v戩

B戨u, av1 戫 bv2戩 戽 aB戨u,v1戩 戫 bB戨u,v2戩

则称 B戨·, ·戩 是 V 上的一个 双线性型．

显然，由于双线性型有和内积相同的双线性性，因此在我们选定了一组基后，一个二

次型 B戨u,v戩 总可以写成以下的矩阵相乘的形式

B戨u,v戩 戽 u>Av

其中 aij 戽 B戨ei, ej戩．我们称 A 为这个二次型在这组基下的矩阵．对于一个任意的二次

型，它并不要求像内积一样是对称的或者正定的，因此它的矩阵也不一定是对称或正定的

矩阵．

仍然与内积相似，如果我们换一组基，设基变换矩阵为 P，那么这个二次型的矩阵会

变为 P>AP，也就是矩阵的合同．

有了这些背景知识，下面我们来定义我们将要研究的对象——二次型．

定义 7.2: 二次型

设 V 是一个实线性空间，若 B戨·, ·戩 是 V 上的一个双线性型，则称 Q戨x戩 戽 B戨x,x戩

为 V 上的一个 二次型．

既然二次型就是给双线性型的两个变元赋予一个相同的变量，那么自然它就可以用矩

阵表示为

Q戨x戩 戽 x>Ax

这里 A 就是双线性型的一个矩阵，自然也就是一个没有什么要求的矩阵．但如果我们把

x 的坐标写出来 x 戽 扛x1, · · · , xn扝>，那么这个矩阵乘法可以写作

Q戨x戩 戽
n∑
i=1

n∑
j=1

aijxixj

可见二次型就是一个只有二次项的多元二次函数．在 i 6戽 j 的情况下，xixj 项的系数是

aij 戫 aji，也就是矩阵的两个对称的矩阵元的和．这说明，即使我们对矩阵 A 做了一些改

变，只要我们不改变矩阵的对称矩阵元的和，那么这个二次型是不改变的．或者说，一个

二次型可以由多个矩阵表示．那么用哪个矩阵表示二次型更好呢？我们选择对称矩阵，也

就是令 aij 戽 aji．

与双线性型相同，二次型也可以做基变换．若基变换矩阵为 P，那么二次型在新基下

的矩阵为 P>AP，这也是一个对称矩阵．
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7.2 二次型的标准型与规范型

7.2.1 标准型与主轴定理

对于一个二次型 Q戨x戩，我们也像上一章一样，希望在一组基下把它的矩阵写为对角

矩阵．这是因为对角矩阵也会大大简化二次型的形式．设在一组基下，二次型的矩阵为对

角矩阵 D 戽 扤扩扡执戨d1, · · · , dn戩，那么这个二次型就可以被写作

Q戨x戩 戽 x>Dx 戽
n∑
i=1

dix
2
i

这样，我们的二次型就成了一个没有交叉项的更简洁的二次型，我们称之为二次型的 标

准型．那么一个任意的二次型能否在一组特定的基下被写作为标准型呢？也就是说，对于

任意一个对称矩阵 A，能否找到一个基变换矩阵 P，使得 P>AP 为对角矩阵？我们上一

章学过，对称矩阵一定可以被一个正交矩阵 P 相似化为对角矩阵 P−1AP，而正交矩阵

的逆恰好就是其转置，也就是说 P−1AP 就是 P>AP，且对角化的矩阵的主对角线上是

其特征值．

由此，我们就得到了二次型的主轴定理：一个二次型一定可以在一组标准正交基下被

写作标准型

Q戨x戩 戽
m∑
i=1

λix
2
i

其中 λ1, · · · , λm 为二次型的矩阵的特征值，我们在此仍然把特征值按照其重数进行重复．

7.2.2 规范型与惯性定理

我们还可以把二次型进一步化简．我们在对角化矩阵时，将正的特征值放在前面，负

的特征值放在后面，最后放上零特征值，也就是

D 戽 扤扩扡执戨 λ1, · · ·︸ ︷︷ ︸
正特征值

, · · · , λr︸ ︷︷ ︸
负特征值

, 戰, · · · , 戰戩

其中 r 戽 扲扡扮扫A，也称为这个二次型的秩．我们可以再定义一个基变换矩阵

Q 戽 扤扩扡执

(
戱√
|λ1|

, · · · , 戱√
|λr|

, 戰, · · · , 戰

)
我们可以发现，这个基变换可以进一步将二次型进行化简，此时矩阵的正特征值被化为

戫戱，负特征值化为 −戱，整个矩阵变为

S 戽 Q>DQ 戽 扤扩扡执戨戫戱, · · · ,戫戱︸ ︷︷ ︸
n+

,−戱, · · · ,−戱︸ ︷︷ ︸
n−

, 戰, · · · , 戰︸ ︷︷ ︸
n−r

戩

而此时二次型被化为一个系数只能是正负一的没有交叉项的二次型

Q戨x戩 戽

n+∑
i=1

x2
i −

n−∑
j=1

x2
j+n+

这里的惯性 (inertia) 和物

理上的惯性没什么关系，它

只是借用这个词的本意，即

一种不变量．

我们称这个形式为二次型的 规范型，任意一个二次型一定可以被化为这样的规范型，

且规范型是唯一的，这个结论称为 Sylvester 惯性定理．我们称规范型中系数为 戫戱 的

个数为二次型的正惯性指数 n+，系数为 −戱 的个数为负惯性指数 n−．二者的差 n+ − n−
称为 符号差．
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例 7.1. 平面二次曲线 考虑平面二次曲线 户x2 戫 戱戳y2 − 戶
√
戳xy 戽 戱戶，其图像是一个倾

斜的椭圆，如下图所示

−戲 −戱 戱 戲

−戱

戱

x

y

我们将其写成矩阵形式 [
x y

] [ 户/戱戶 −戳
√
戳/戱戶

−戳
√
戳/戱戶 戱戳/戱戶

][
x

y

]
戽 戱

等式左侧就是关于向量 扛x, y扝> 的一个二次型．计算可得，这个二次型的矩阵的特征值

是 戱 和 戱/戴，我们做以下正交变换，也就是对基进行旋转[
x1

y1

]
戽

[√
戳/戲 戱/戲

−戱/戲
√
戳/戲

][
x

y

]

则二次型被化为标准型，此时的曲线在新的坐标下的方程为[
x1 y1

] [戱/戴
戱

][
x1

y1

]
戽 戱

我们再把曲线在新的坐标轴下画出来，得到

−戲 −戱 戱 戲

−戱

戱

x1

y1

可以看到，这个椭圆被“摆正” 了．如果我们进一步做基变换[
x2

y2

]
戽

[
戱/戲

戱

][
x1

y1

]

那么二次型被化为规范型，此时的曲线方程为[
x2 y2

] [戱
戱

][
x2

y2

]
戽 戱

此时曲线变为单位圆

−戱 戱

−戱

戱

x2

y2
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我们上面用二次型的方程表示了椭圆．二次曲线还包括双曲线和抛物线，它们能

否用二次型表示呢？表示它们的二次型又都有什么特点呢？我们知道，基变换可以改

变二次曲线的形状，但不能把椭圆、双曲线和抛物线互相转化，这说明一定有一种在

基变换下的不变量表示着二次曲线的类型．而二次型在基变换下的不变量就是其惯性

指数．可以很容易验证，二次曲线 Q戨扛x, y扝>戩 戽 戱 的类型与惯性指数的关系为

• 若 Q 的正惯性指数为 戲，则曲线为椭圆；

• 若 Q 的正惯性指数为 戱，负惯性指数为 戰，则曲线为抛物线；

• 若 Q 的正惯性指数为 戱，负惯性指数为 戱，则曲线为双曲线；

• 若 Q 的正惯性指数为 戰，则曲线 Q戨扛x, y扝>戩 戽 戱 不存在．

例 7.2. 多维正态分布 一个 n 维正态分布 X 的联合概率密度函数为

pX戨x戩 戽
戱√

戨戲π戩n|Σ|
扥扸扰

(
−戱

戲
戨x− µ戩>Σ−1戨x− µ戩

)
其中 Σ 是 X 的协方差矩阵．我们首先可以把变量中心化，即定义 找X 戽 X − µ，则
找X 的概率密度函数为

pX̃戨找x戩 戽
戱√

戨戲π戩n|Σ|
扥扸扰

(
−戱

戲
找x>Σ−1找x

)
接下来，我们可以做正交的坐标变换把 找X 变为 Y，使得 Y 的协方差矩阵为对角矩阵，

也就是将二次型变为标准型．设 扖扡扲戨Yi戩 戽 σ2
i，则有

pY 戨y戩 戽
戱√

戨戲π戩n
∏n
i=1 σ

2
i

扥扸扰

(
−戱

戲

n∑
i=1

y2
i

σ2
i

)

戽
n∏
i=1

戱√
戲πσi

扥扸扰

(
y2
i

戲σ2
i

)
此时的多元正态分布的各个分量之间是独立的，因而联合分布可以分解为每个分量的

边缘分布的乘积．我们甚至还可以进一步将二次型化为规范型，此时每个边缘分布都

是标准正态分布．

7.3 正定二次型

最后一节，我们来学习二次型的定性和它们的性质．首先我们给出正定、半正定、负

定、半负定与不定的定义．

定义 7.3: 正定性、半正定性、负定性、半负定性与不定性

对于二次型 Q戨x戩 正定二次型在一些地方会被

记为 Q � 0，半正定二次

型记为 Q � 0．负定和半

负定同理．

� 若对任意 x 都有 Q戨x戩 ≥ 戰，当且仅当 x 戽 0 时取等号，则称二次型 Q戨x戩 和

其矩阵是 正定的；

� 若对任意 x 都有 Q戨x戩 ≥ 戰，且对于一些 x 6戽 0 也可以取等号，则称二次型

Q戨x戩 和其矩阵是 半正定的．

同样，我们可以定义负定和半负定的概念．既不正定、半正定也不负定、半负定的

二次型或矩阵称为 不定的．
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这个定义非常好理解．我们先讨论正定、半正定、负定、半负定和不定二次型的性质，

再直观地解释这些名词的含义．

一个二次型是正定、半正定、负定、半负定还是不定，显然在基变换下不会改变．因

此我们只需要讨论其规范型的性质即可．对于规范型

Q戨x戩 戽

n+∑
i=1

x2
i 戫

n−∑
j=1

戨−戱戩x2
j+n+

戫
n−r∑
k=1

戰 · x2
k+r

一个二次型正定的定义是当 x1, · · · , xn 都不为零时，二次型严格大于零，这等价于上式中
只有正的平方项，而不能有负的平方项或零项，也就意味着正惯性指数为 n．同样可以看

出，半正定等价于有正的平方项和零项，但不能有负的平方项．不定等价于正的平方项和

负的平方项都存在．而这些 戱、−戱 和 戰 又代表着特征值的符号，因此我们有以下结论．

定理 7.1: 正定、半正定和不定的等价条件

设 Q戨x戩 戽 x>Ax 是 n 维线性空间上的二次型，则

以下条件分别等价于 Q戨x戩 正定：

戱戮 A 的所有特征值都大于零；

戲戮 Q戨x戩 的正惯性指数为 n．

以下条件分别等价于 Q戨x戩 半正定：

戱戮 A 的所有特征值都大于等于零，且存在至少一个零特征值；

戲戮 Q戨x戩 的正惯性指数小于 n，但负惯性指数为零．

以下条件分别等价于 Q戨x戩 不定：

戱戮 A 的特征值既有正也有负；

戲戮 Q戨x戩 的正惯性指数和负惯性指数都非零．

有了这个结论，我们就可以直观地画出来这些不同类型的二次型了．由于我们只能

在三维空间中作图，因而我们只画二维空间 R2 上的二次型 Q戨x戩．我们把自变量 x 戽

扛x1, x2扝
> 画在水平面上，并用高度表示 Q戨x戩 的值，也就是按照一般的二元函数图像的画

法来画．

我们首先来看正定二次型．二维空间上所有正定二次型的规范型一定是 Q戨x戩 戽 x2
1 戫

x2
2，其图像是一个向上弯曲的二次曲面．任意一个正定二次型一定是旋转、拉伸版本的这

种曲面．

−戲
戰

戲 −戲
戰

戲戰

戱戰

戸戳
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而对于半正定二次型，我们来画规范型 Q戨x戩 戽 x2
1，其图像也向上弯曲，但在一个方

向上保持为零．

−戲
戰

戲 −戲
戰

戲戰

戵

最后我们来看不定二次型，我们来画规范型 Q戨x戩 戽 x2
1 − x2

2，其图像在一个方向上向

上弯曲，但在另一个方向上向下弯曲．这种面称为马鞍面，而此时的原点称为鞍点．

−戲
戰

戲 −戲
戰

戲
−戱戰

戰

戱戰

高维的二次型虽然无法直观地画出，但也与此类似．正定二次型意味着随着 x的长度

的增加，Q戨x戩 以二次函数的速度增加．半正定二次型意味着在一些方向上，Q戨x戩 以二次

函数的速度增加，但在另一些方向上保持为零．而不定二次型意味着在一些方向上增加，

在另一些方向上降低．

例 7.3. 多元函数的极值 若我们要判断一个一元函数 y 戽 f戨x戩 的极值点，我们首先要

求出导数为零的点 x0．但导数为零的点不一定是极值点，我们还需要看它的二阶导数

f ′′戨x0戩．若 f ′′戨x0戩 > 戰，则 x0 是其极小值点；若 f ′′戨x0戩 < 戰，则 x0 是其极大值点．

若 f ′′戨x0戩 戽 戰，那么 x0 是否是极值点还需要进一步讨论．这个判定准则的原因是一元

函数的二阶泰勒展开

f戨x0 戫戁x戩− f戨x0戩 戽 f ′戨x0戩戁x戫
戱

戲
f ′′戨x0戩戁x

2 戫 o戨戁x2戩

当等式右侧第一项为零时，我们需要看第二项．第二项不为零时第二项占主导，若 f ′′戨x0戩 >

戰 则函数在该点附近近似为一个开口向上的抛物线，因此是极小值点；若 f ′′戨x0戩 < 戰

则近似为开口向下的抛物线，因此为极大值点．

对于一个多元函数 y 戽 f戨x1, · · · , xn戩，其一阶导数的等价物是其梯度，是一个向
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量函数．要求函数的极值点，我们首先要求其梯度为零

∇f 戽

[
∂f

∂x1

, · · · , ∂f
∂xn

]>
戽 0

也就是对于任意变元 xi 有 ∂f/∂xi 戽 戰，这样可以解出一些点 x0 戽 戨x1, · · · , xn戩．但
梯度为零并不能保证是极值点，我们还要看其二阶导数的等价物，这是一个矩阵函数，

称为 黑黑黑塞塞塞矩矩矩阵阵阵 Hf，定义为 (
Hf

)
ij
戽

∂2f

∂xi∂xj

若在该点处黑塞矩阵正定，则该点是极小值；若黑塞矩阵负定，则该点是极大值；若黑

塞矩阵不定，则该点是鞍点．黑塞矩阵半正定或半负定的情况需要具体讨论．

使用黑塞矩阵判断极值点的原因是，多元函数的二阶泰勒展开可以被写作

f戨x0 戫戁x戩− f戨x0戩 戽 戨∇f戩>戁x戫
戱

戲
戁x>Hf戁x戫 o戨|戁x|2戩

其中 ∇f 和 Hf 都是在 x0 处的取值．我们可以发现第二项是一个二次型．在第一项

为零而第二项不为零时，第二项占主导地位．于是函数在展开点的附近类似于我们上

面画出的二次型性态．

例 7.4. 我们在第五章学习的欧氏空间上的内积实际上就是一个正定二次型，或者说正

定双线性型．我们也可以定义非正定的非退化双线性型作为“内积”，此时的空间称为

伪欧氏空间．相对论中的闵氏时空就是伪欧氏空间的一个重要例子．闵氏时空上的二

次型记为 η．对于一个矢量 v 戽 扛t, x, y, z扝>，其“长度的平方” 由二次型定义为

η戨v戩 戽 −c2t2 戫 x2 戫 y2 戫 z2

可以发现这是一个非正定的二次型．其正惯性指数为 戳，负惯性指数为 戱．

戸戵
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