
应用随机过程 笔记  
 

1. 概率论基础知识  

1.1. 概率  

样本空间 ，其元素称为样本点 ，子集称为事件 ；
 的一些子集构成集类 。  若对于补和可列并封闭，则称为  代数，  称为可测空间；
概率  是  上满足非负性、归一性、可列可加性的函数。  称为概率空间。

1.2. 随机变量  

，满足 。
分布函数 ，其中  的意思是 。

给定随机变量  可以生成  上的  代数，即包含所有形如  的最小  代数，记作 
。同样可以定义 。生成的  代数表示由  完全决定的事件，在后面的

停时中会用到。

1.3. Riemann-Stieltjes 积分  

设  在  上单调不减、右连续，  连续，则  关于  在  上的 R-S 积分为（分割、
取点、求极限的定义方式和黎曼积分相同）

R-S 积分满足区间可加性、线性性（对  和  都线性）。

若  在  上可导，则  。

1.4. 随机变量的数字特征  

数学期望：若  存在，则

方差： ，协方差： 

。
。

 阶矩：原点矩 ，中心矩 。

1.5. 重要函数和变换  

矩母函数

矩母函数的重要性质是：若  的  阶矩存在，则 。

特征函数

若分布函数  存在，则  就是  的傅立叶变换。
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1.6. 收敛性  

对于随机变量序列  及其分布函数 ，定义以下收敛方式

几乎必然收敛： ，记作 ；

依概率收敛： ，记作 ；

 阶矩收敛： ，记作 ；  时称为均方收敛；

依分布收敛（弱收敛）： ，记作 。

四种收敛的关系：

 

2. 随机过程  

2.1. 随机过程的定义  

随机过程是概率空间  上的一族随机变量 。

 也可写成 、  或 ，其所有取值构成状态空间 。

2.2. 随机过程的数字特征  

协方差函数  和自相关函数 

二者满足 

同样也可以定义互协方差函数  和互相关函数 

2.3. 常见类型的随机过程  

独立增量过程：对任意 ，有  相互独立。若  
只与  有关，则称有平稳增量。

马尔可夫过程：将来的状态只与现在有关，而与过去无关（条件独立）。

二阶矩过程：方差函数永远存在。

平稳过程：

宽平稳过程：均值不变，协方差  只与  有关。
严平稳过程：  与  有相
同的分布。

鞅： 。

更新过程：  独立同分布， ，则  为更新过程。

点过程（计数过程）：  取值非负整数， ，当  时有 
。

af://n48
af://n62
af://n63
af://n66
af://n73


2.4.  代数流  

对于概率空间 ，  代表  的一系列子  代数，且满足  非降，即对于  有 
，则称  为一个  代数流。有时  也指对应的随机过程生成的  代数流，即

。

 代数流  代表了随机过程截至时间  所积累的信息，即是一个信息流。若一个随机变量  是  
可测的，是指对于 Borel 集的元素 ，有 。这表示  完全由  时间及以
前的信息所决定。

 

3. 泊松过程  

3.1. （时齐）泊松过程的定义  

泊松过程  指时间  以内发生事件的个数，发生的速率为 。

泊松过程是具有独立增量和平稳增量的计数过程，定义为满足：

1. 计数过程，且 ；
2. 独立增量；
3.  服从参数为  的泊松分布。

等价定义：

1. 计数过程，且 ；
2. 独立平稳增量；
3. 对  和充分小的  有 ，

。

3.2. 泊松过程的重要性质  

定义  是第  个事件的到达时间，  是时间间隔，则有

 独立同服从参数为  的指数分布；
 服从 。

定义年龄  和剩余寿命 ，则有

 与  同分布，即满足参数为  的指数分布（无记忆性）；

 满足 “截尾” 指数分布，即

到达时间  的条件分布

若已知事件在  内只发生一次，则该事件的到达时间是  上的均匀分布（平稳独立增量）。

若发生了  次，则到达时间的次序统计量的联合密度函数为

注：对于  个独立同分布的密度函数为  的统计量 ，其次序统计量的联合密度函数为
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以上除  的性质外都可以作为泊松分布的充要条件。

3.3. 泊松过程的检验与估计  

泊松过程可以通过以下之一进行检验：

1.  独立同指数分布；
2.  与  同分布；
3.  且  时，  满足  上的均匀分布；
4. 给定  且  时，  与  上的独立均匀分布的次序统计量分布相同。

参数  的估计

极大似然估计： ；

区间估计：置信度为  的区间为

3.4. 泊松过程的推广  

非时齐泊松过程

非时齐泊松过程的定义与时齐泊松过程类似，但不要求平稳增量，强度  随时间变化。

定义均值函数 

则  服从参数为  的泊松分布。

非时齐泊松过程可以转化为时齐泊松过程：  是强度为 1 的泊松过程。

复合泊松过程

设  独立同分布，  为泊松过程，且二者独立，则

称为复合泊松过程。复合泊松过程的意思是：若某种事件的发生复合泊松过程，  表示每个事件的某种
随机的广延量，则  表示时间  内所有事件的该参量的总量。

复合泊松过程的性质：

   有独立增量；

  ， 。

条件泊松过程

若泊松过程的速率变成一个随机变量 ，对于给定的  时，  是参数为  的泊松过程，则 
 称为条件泊松过程。

条件泊松过程的全概率公式：若  的分布是 ，则长度为  的时间区间内发生  次事件的概率是

条件泊松过程的性质：

  ，
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4. 更新过程  

4.1. 更新过程的定义  

更新过程是指时间间隔  独立同分布的计数过程。即 ， 。

4.2. 更新过程的重要性质  

到达时间  的分布

若  的分布为 ，  的分布为 ，则有

即  是  的  重卷积，记为 。

 记为 ，有 

平均事件数目

更新函数定义为 ，则有

 满足更新方程

 称为更新密度，满足更新方程

4.3. 更新方程  

对于已知函数  和已知的分布函数 ，关于未知函数  的更新方程是指

若  有界，则更新方程的解唯一，为

其中

4.4. 更新定理  

更新过程下的 Wald 等式

Feller 基本更新定理
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定义格点分布：对于非负随机变量 ，若 ，使得 ，其中满足此式的最大 
 称为  的周期，称  的分布函数  是格点的。

Blackwell 更新定理

 是非负的分布函数，  是  的  重卷积， ，则

若  不是格点的，则对 ，

若  是格点的，周期为 ，则

关键更新定理（与 Blackwell 更新定理等价）

若  是均值为  的非负随机变量的分布函数，  单调且绝对可积。对于更新方程

 是其解，则

若  是非格点的，则

若  是以  为周期的格点的，则对于 ，有

4.5. 更新过程的推广  

延迟更新过程

延迟更新过程是指  服从与其他  不同的分布 。此情况下，更新函数变为

此更新函数仍然遵循更新定理。

更新回报过程

假设每次更新的时候都伴随随机的回报 ，其中随机向量  独立同分布，但  可以依赖 
。则更新回报过程是指

更新回报定理指出，若更新间隔  满足 ，每次更新的期望回报 ，则有

交错更新过程
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一个系统有“开”(1) 和“关”(0) 两种状态，假设系统最初为“开”，且在  时间后变为“关”，再在  时间后
变为开，  时间后变为关，如此往复。设  独立同分布，即 } 之间、  之间独立同分
布，但  和  在  时可以相关。则系统的状态  称为交错更新过程。

交错更新定理指出，若 ，且  不是格点的，则

 

5. 马尔可夫链  

5.1. 马尔可夫链的定义  

马尔可夫性是指未来只与现在有关，与过去无关。即对任意的状态 ，有

若马尔可夫链的初始状态  给定，则其统计特性完全由条件概率 
 决定。

一个非常有用的结论是：若随机过程  满足 ，其中  为取值在  上的独立
同分布随机变量，且  与  相互独立，则  是马尔可夫链，且 。

5.2. 转移概率  

定义一步转移概率  和  步转移概率 。

定义转移概率矩阵 ， ，即

则有 Chapman-Kolmogorov 方程

或

若系统在时刻  的分布为  （行向量），则  时刻的分布为 。

5.3. 停时与强马尔可夫性  

设  是一个随机过程，  是一个取值于  的随机变量。若对于 ，事件 
 完全取决于 ，即 ，则称  是一个停

时。停时的直观意义是，一个过程是否停止完全取决于该时刻前的信息。

强马尔可夫性是将马尔可夫性中确定的现在时刻  变为随机的停时 ，仍然保持“未来与过去无关”的性
质。即对于停时 ，有

可以证明，任何离散时间的马尔可夫链都具有强马尔可夫性。
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5.4. 状态的分类  

状态  可达状态  （ ）：  使得 ；互相可达称为互通，记为 ；

可以将根据是否互通将马尔可夫链分为多个类。只存在一个类的马尔可夫链称为不可约的。

定义周期 ，若  称为非周期的，  称为周期的。属于同一个
类的状态的周期相同。

常返：记  为从  经过  步后首次到达  的概率， 。  称为常返的。

 称为吸收的。

两个常返态 、  之间满足 。

对于常返态 ，定义  为返回的平均步数。

若  称为正常返，  称为零常返；
正常返  非周期 = 遍历。

常返、非常返、正常返、零常返都是类性质。

从状态  进入  次数的期望

返回次数的期望：对于常返态为 ，对于非常返态为有限，且等于 。

对于两个常返态 、 ，从  进入  的次数的期望也为 。

状态空间分解定理：可以将状态空间  分解为有限个或可列个互不相交的子集

其中：

 每个  是常返态构成的不可约闭集（从内部无法到达外部），称为基本常返闭集；

 每个  的状态同属正常返态或零常返态，具有相同周期，且 ；

  由全体非常返态构成，从  中无法进入 。

若  为有限集，则  一定为非闭集，即系统最终一定进入常返闭集。

5.5. 极限分布  

转移概率的极限

基本极限定理：若  是周期为  的常返态，则（  时为 0）

对于两个状态之间的转移概率，若  为非常返态或零常返态，则对任意的  有

若  正常返，该极限不一定存在。但对给定的  和 ，有

或者可以考虑其 Cesaro 平均收敛性
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平稳分布和极限分布

平稳分布  是指满足

极限分布是指（若与  无关的极限存在）

对于不可约遍历链，极限分布就是平稳分布，且唯一。而对于非常返或零常返的不可约链，平稳分布不
存在。

对于不可约遍历链，  是下面方程组的唯一解。

对于一般的马尔可夫链，用  表示全体正常返态的集合，则平稳分布存在的充要条件是  非空，平
稳分布唯一存在的充要条件为  只包括一个基本常返闭集。

5.6. 马尔可夫链蒙特卡洛方法 (MCMC)  

对于一个随机向量 ，我们常常想要求其某个函数的期望 。蒙特卡洛方法是生成独立同
分布的随机向量序列 ，并依照强大数定律导出

但生成特定概率分布的随机向量并不简单（例如归一化因子难以计算，或维度之间相关等）。MCMC 试
图生成以  为平稳概率的马尔科夫链。当  时，  的分布接近 ，从而以上面相同
的方式估计 。

 

6. 时间连续马尔可夫链  

6.1. 时间连续马尔可夫链  

时间连续马尔可夫链的指标集为 ，但其状态空间  仍然是离散的。时间连续马尔可夫链对
于任意 ，有

记转移概率为

若  与  无关，称该马尔可夫链是时齐的，记转移概率为 。本处只讨论时齐的连续时间马

尔可夫链。

时间连续马尔可夫链的一条轨道是：  在某个状态停留一段时间后，跳到另一个状态，再停留一段时间
后再跳向第三个状态，如此进行下去。时间连续马尔可夫链具有无记忆性，即在每个状态停留的概率满
足指数分布。

af://n329
af://n334
af://n335


6.2. 转移概率与转移速率  

时间连续马尔可夫链也有 C-K 方程

或矩阵形式

转移矩阵满足  且  对于  一致连续。

为了得到与时间间隔无关的描述转移概率的量，定义转移速率矩阵

 的对角元可以是 。当没有无穷时，称  是保守的。当状态空间  有限时，  必保守。

其中  是从状态  转移至状态  的速率。定义  表示从状态  跳出的速率。

Kolmogorov 向前向后微分方程（第二条为向前方程，在状态有限或生灭过程中成立）

或写成矩阵形式

 

7. 鞅  

7.1. 鞅的定义  

鞅的概念来源于公平赌博，即资金期望不变化。随机过程  满足以下条件则称为鞅

1. ；
2. 。

如果有另一随机过程 （例如代表每场赌博的输赢），  是  的函数，则  满足以
下条件称为关于  是鞅

1. ；
2. 。

有时引入记号 ，则也会说  关于  是鞅。

对于鞅， ，所以其期望在任何时刻均相等。

7.2. 上鞅/下鞅及分解定理  

对于随机过程  和 ，  是  的函数，则  满足以下条件称为关于  是上
（下）鞅

1. （ ）；
2. （ 。
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上（下）鞅描述的是不利（有利）的非公平赌博。

下（上）鞅分解定理：下（上）鞅一定可以唯一地分解为一个鞅和一个增（减）过程之和。即对于任意
一个  关于  是下（上）鞅，则必存在唯一的分解  使得

1.  关于  是鞅；
2.  是  的函数，且 ，  不减（增），且期望存在。

7.3. 停时定理  

设  关于  是鞅，  是停时且满足

1. ；
2. ；
3. ，

则有 。

停时定理的意义是：在公平赌博中，无论你按照何种策略根据前面的结果决定停止时间，（在满足一定
条件下）你都不可能赢。由于现实中赌博不可能无限进行下去，即停时是有界的，因此该条件自然满
足。

7.4. 鞅收敛定理  

设  关于  是（上/下）鞅，并且 ，则存在随机变量  使得

即：有上界的下鞅收敛，有下界的上鞅收敛。

7.5. 连续鞅  

定义在相同概率空间上的随机过程  若满足以下条件，则称  关于  是鞅

1. ；
2. ；
3.  关于  是可测的。

同样可以定义连续时间的上鞅和下鞅。

连续鞅也满足上面的重要定理

期望不变： ；
停时定理：若  是有界停时，则 ；

鞅收敛定理：若 ，则存在  使得 。

 

8. 布朗运动  

8.1. 布朗运动的定义  

Brown 运动又称为 Wiener 过程，是对称随机游走的连续化。其定义为

1.  有独立增量；
2. 对每个 ，  服从正态分布 。

一个等价定义是

1. 正态增量： ；
2. 独立增量：  独立于过去的 ；
3. 连续性：  是  的连续函数。
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当  且  时，称为标准布朗运动。

8.2. 布朗运动的基本性质  

布朗运动的马尔可夫性

布朗运动不但具有马尔可夫性，还具有强马尔可夫性。

布朗运动的鞅性

布朗运动  是鞅，  也是鞅。

布朗运动的路径性质

对于一个布朗运动，其几乎所有路径  都满足

1. 在任何区间都不单调；

2. 在任何点都不可微；

3. 在任何区间上都不是有界变差的，即对任意一个区间分割  有

4. 对于任何 ，路径在  上的二次变差为 ，即对任意一个分割  有

布朗运动的正态性

正态过程（Gauss 过程）是指任意有限维分布都是正态分布的随机过程。

布朗运动是期望 、协方差  的正态过程。

8.3. 首中时与零点  

首中时

以  表示布朗运动首次击中  的时间，即 。那么有

 的两条重要性质是，对于 ，有 ，但 。

零点

布朗运动的反正弦律是指，  在  上没有零点的概率是

这是一个很有趣的结论，即在  上有没有零点的概率与  无关，与  有关。

8.4. 布朗运动的推广  

布朗桥

布朗桥是给定  的  的布朗运动。其定义为

布朗桥的分布与给定  的布朗运动的条件分布相同。

有吸收值的布朗运动

若  处的首中时为 ，则在  处被吸收的布朗运动是指
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其概率分布为

在原点反射的布朗运动

定义为 。其分布函数非常简单，即 。

几何布朗运动

定义为 。几何布朗运动描述的是相对变化为独立同分布的模型。例如，若随机变量  

满足  独立同分布，则当  时，  可以描述为几何布朗运动。

几何布朗运动满足 ， 。

漂移布朗运动

 称为漂移系数为  的布朗运动。它是不对称随机游走的连续化。

在漂移布朗运动中，很有用的一个量是，起始于 ，先击中  再击中  的概率（ ）

 

9. 随机微积分  

9.1.  空间上的分析  

定义所有二阶矩存在的随机变量构成的集合为  空间。其上内积定义为  （复数则定
义为 ）。从而可以定义范数  和距离 。

在此基础上，可以定义分析学的概念。对于随机变量序列 ，若 ，则称  

是序列  的均方极限，记作 。  空间的柯西序列必收敛，因此  空间是一个完备

的欧氏空间。

连续的二阶矩过程（即  的过程）相当于  空间中的一条曲线。我们可以对随机过程定
义分析学性质。

均方连续

 在  处均方连续的充要条件是自相关函数  在  处连续。

均方导数

均方可导的充要条件是  在  处广义二次可微，即下式的极限存在

均方积分：若  是  上的函数，  是  上的二阶矩过程，则与黎曼积分进行相同的分割、
取点、最大长度趋于 0 的过程，若极限存在，则称为黎曼均方积分
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均方可积的一个充分条件是  存在。

这些均方分析性质与普通函数的分析学性质有很多类似之处。

均方导数的性质：

1. 可导则连续；
2. 导数具有线性性；
3. ；
4. ；

5. 。

均方积分的性质：

1. 线性性和区间可加性；

2. 闭区间上  均方连续则均方可积；

3. 若 ，则  均方可导，且 ；

 均方可导，  均方连续，则 ；

4. 。

9.2. Itô 积分  

在概率空间  上，我们希望定义一个随机过程的函数  关于布朗运动  的积分。当 
 满足以下条件时，这种积分是可以恰当定义的。满足这些条件的集合记作 。

1.  关于  可测，即对 ，有 ；
2. ，有  关于  可测，其中  是  代数流，即  完全由  时间及之前的状态决定；
3. 。

 上的随机过程都可以由简单过程进行二阶矩逼近。对于简单过程（  是随机变量）

此时 Itô 积分定义为（注意结果是一个随机变量）

若随机过程  可以由一个简单过程序列  二阶矩逼近，即

则  的 Itô 积分定义为简单过程的积分在均方收敛意义下的极限

9.3. Itô 积分的性质  

Itô 积分的基本性质

线性性与区间可加性（与 R-S 积分相同）

零期望
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方差

Itô 积分过程

Itô 积分的变上限积分定义了一个随机过程

其重要性质包括

 是零均值的连续鞅；

鞅表示定理（上面一条的逆命题）：若  是鞅， ，则必存在唯一的过程 
 使得，对任意 ，有

若  是非随机的  的函数，且 ，则  是高斯过程。

 在  上的二次变差为

9.4. Itô 公式  

Itô 公式相当于随机分析中的链式求导法则：若  是二次连续可微的函数，则对于任意  有

或积分形式

更一般地，如果我们定义 Itô 过程（即漂移-扩散过程），其中随机过程 

而若想要求  和  的函数 ，则  仍然是 Itô 过程，且有

Itô 公式可以用于计算与布朗运动有关的积分式。

9.5. 随机微分方程  

形如

的方程称为随机微分方程 (SDE)。

解的存在唯一性定理

若  满足
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1. 可测性： ；

2. Lipschitz 条件：存在常数  使得对 ，有

3. 线性增长有界：存在常数  使得对  有

4. 初始条件：  关于  可测，且 

则存在唯一的连续路径随机过程  满足该方程，且 。

9.6. SDE 应用举例  

Ornstein–Uhlenbeck (OU) 过程

OU 过程在包括计算神经科学内的许多领域中都很常用。其方程为

由于布朗运动的变差是白噪音，因此该方程可以化做以下形式，称为 Langevin 方程。其中  是白
噪音。

其密度函数  满足 Fokker–Planck 方程

OU 过程是一个平稳的马尔可夫过程，同时也是高斯过程。其解为

Black-Scholes 期权定价公式

金融中的 Black-Scholes 期权定价公式非常有名。设股票的价格为随机过程 ，期望收益率为 ，
波动率为 ，则  应满足 SDE

给定初始变量  时，此方程的解为带有漂移项的几何布朗运动（但后面不直接用这个解）

若期权价格为时间和股票价格的函数 ，根据 Itô 公式展开

若卖出方在  时刻每卖出 1 份期权就买入  份股票进行对冲，即投资组合 ，
则其价值增量应为

要求收益是无风险的，即  项应为 ，所以 ，带入可得

无风险时，收益必等于无风险利率  所造成的收益，即 ，将此带入上式，同时带入
无风险的  ，即可得到最终的 Black-Scholes 方程
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这个结果很有趣的是，它与  和  都无关。在一些经典的期权中该方程有解析解，即为 Black-
Scholes 期权定价公式。
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